Electrochemical Deposition of Silver Oxide Nanostructure for CO₂ Gas Sensing Application N. K. Hassan^b Ava A. Abeed^a Abdullah M. Ali^c

Tikrit University, College of Education for Pure Sciences, Physics Department

^{b)}nadimkh4@tu.edu.iq ^{c)}Abdullah.ma1763@tu.edu.iq ^{a)}Om.eraya@st.tu.edu.ig

Abstract:

High-quality 3D silver oxide nanostructures (Ag₂O) were deposited in the form of nanocrystals on n-type Si using silver nitrate with low-cost and easily controlled technique, which is electrochemical deposition (ECD). Ag₂O has unique potential applications for CO₂ gas sensor. The manufacture of a high-performance CO₂ gas sensor can be achieved based on Ag₂O nanoparticles and growth conditions, such as annealing temperature of the samples produced. Images of Field Emission Scanning Electron Microscope (FESEM) showed Ag₂O nanoparticles in the form of crystals at different annealing temperatures. High crystallization was achieved with a low level of defects of Ag₂O nanostructures prepared at room temperature on Si for the sample annealed at 600 °C. The XRD pattern showed that the prevailing peak is at (111). The real-time of start/stop was measured with and without CO₂ gas applied to a sensor manufactured based on Ag₂O nanostructures prepared, response time, recovery and sensitivity (3.8, 4.3 and 37.7%), respectively.

Keyword: Silver oxide nanostructures, electrochemical deposition (ECD), thermal vacuum machine, sensitivity.

الملخص:

تم ترسيب هياكل أوكسيد الفضة النانوية ثلاثية الأبعاد عالية الجودة (Ag2O) في شكل بلورات نانوية على n-type Si باستخدام نترات الفضة AgNH3 بتقنية منخفضة التكلفة ويمكن التحكم فيها بسهولة ؛ الترسيب الكهروكيميائي (ECD). تمتلك Ag₂O النانوية تطبيقات محتملة فريدة لمستشعر غاز ثاني أوكسيد الكاربون. ويمكن تحقيق تصنيع مستشعر غاز ثاني أوكسيد الكاربون عالى الأداء استنادًا إلى جسيمات Ag₂O النانوية واعتمادًا على ظروف النمو مثل درجة حرارة التلدين للعينات المنتجة. أظهرت صور المجهر الإلكتروني الماسح للانبعاث المجالي (FESEM) جسيمات Ag2O النانوية على شكل بلورات تحت التلدين المختلفة. وتم تحقيق تبلور عالى مع مستوى منخفض من عيوب الهياكل النانوية Ag₂O المحضرة في درجة حرارة الغرفة على Si للعينة الملدنة عند ℃ 600، وأظهر نمط XRD أن الذروة السائدة عند (111). وتم قياس تبديل التشغيل/ الإيقاف في الوقت الفعلى مع وبدون غاز ثاني أوكسيد الكاربون المطبق على مستشعر مُصنَّع استنادًا إلى الهياكل النانوية Ag₂O المحضرة وزمن الاستجابة والاسترخاء والحساسبة 3.8 و 4.3, 37.7%.

الكلمات المفتاحية: هياكل اوكسيد الفضنة النانوية، الترسيب الكهروكيميائي، نظام التفريغ الحراري، التحسسية.

Introduction

Ag₂O particles have attracted considerable attention due to their extensive properties and uses in photovoltaic (PV) cells and gas sensors for their high chemical sensitivity to gases [1, 2]. Ag₂O is a transparent p-type semiconductor with a simple cubic structure. It is used in different ways, including the deposition of thermal oxidation of silver membranes [3], thermal evaporation [4], and the electrochemical deposition method employed in the current study [5]. When depositing Ag₂O on Si, the membranes are heated for 60 min at varied temperatures (500,550,600,650 °C), respectively. The synthetic and surface characteristics of deposited samples and their changes are studied through changing the temperatures. This is to obtain the best membrane with appropriate structure, reduce the lattice asymmetry of crystals, and improve sensor performance for detecting CO_2 gas with measuring the highest sensitivity at the lowest time of response and recovery.

Experimental Method

Ag₂O was deposited on Si, where Si samples were cleaned by immersing them in Hcl for 5 min with concentration of 95%. After that, they were immersed in ionic water and placed in diluted methanol CH₃OH for 5 min. Then, they were washed with ionic water and immersed in absolute ethanol C₂H₅OH for 5 min and the sample was washed with distilled water and then dried. Ag₂O solution was prepared using 0.894 gm of AgNH₃ with molarity of 0.1% and placed in 50 ml of distilled water with constant stirring. The deposition process on Si was for 1hr and then the sample was placed in the electric oven for 60 min at a temperature of 500 °C to oxidize it and get the Ag₂O membrane. The depositions process was repeated for three samples using the same time with different temperatures (550, 600, 650 °C), respectively. The synthetic properties were studied by using X-ray diffraction (XRD) machine with copper radiation (Cu- radiation), with voltage of (40 kV) and current of (30 mA). The structural characteristics of the material surface were studied using field emission scanning electron microscope (FESEM). In order to design a gas sensor, the junction of a metal-semiconductor-metal (MSM) was done and AL was deposited on Ag₂O in thermal vacuum machine to obtain the Schottky diode using Fingers pattern where each electrode contained five fingers with a thickness of 230 μ m, length of 3.3 mm and the distance between each two fingers was 400 μ m. After depositing AL, the sensor was annealed at 450 °C for 5 min. For obtaining CO₂ gas sensor, AL was deposited with a thickness of 200 nm. Therefore, the highest sensitivity was measured for samples at the lowest time of response and recovery.

Results and Discussion

Figure (1) shows (FESEM) images of Ag_2O samples regularly distributed on Si. The images demonstrate a difference in the order and distribution of particles as temperatures increase. The particles are in a crystallike shape of a regular size with decreased distances between them. When the temperatures change from 500 °C to 550 °C, there appears a combination of large and small particles. However, the best results are obtained at 600 °C and 60 min, which corresponds to XRD results in figure (2).

Figure 1: FESEM images of Ag₂O structures deposited on n-type silicon (111) and annealed for 1hr at temperatures of a) 500 °C, (b) 550 °C, (c) 600 °C, (d) 650 °C

الجامعة المستخصرية – مجلة كلية التحريية التحريية التربية

Figure 2: X-ray diffraction pattern of Ag₂O structures deposited on n-type silicon (111) and annealed for 1hr at temperatures of a) 500 °C, (b) 550 °C, (c) 600 °C, (d) 650 °C

Figure (2) presents polycrystalline membranes and peaks that clarify the type of silver oxide with cubic structure. The prevailing phase is at level (111) corresponding to JCPDS of the annealed sample at 600 °C for 60 min. The results show increased intensity of all peaks as temperatures increased. The average crystalline size (D) is measured using Debye-Scherrer equation [6]:

Where β is the width of the curve at the mid intensity; Q is constant determined by type of material. Table (1) represents the average granular size of samples.

Annealing temperature °C	Average Crystalline size (nm)			
500	56			
550	84			
600	146			
650	58			

 Table 1: The average crystalline size for all samples

The sensitivity of gas sensor, which represents the change in particle conductivity at CO_2 exposure, is calculated and can be written in terms of resistance [7,8]:

 $S(\%) = \frac{R_{gas} - R_{air}}{R_{gas}} \times 100 \dots (2)$

Where S is sensitivity; R_{gas} is resistance measured by the presence of CO₂; and R_{air} is resistance measured in dry air.

Figure (3) shows the sensitivity of Ag_2O particle samples at 100 °C, which reveal an improvement in gas response as the annealing temperature of the implanted samples increases. The highest sensitivity of the nanocrystal-shaped-prepared samples is at a temperature of 600 °C, which means improved CO₂ response. While the sensitivity of Ag_2O at 650 °C and the response of CO₂ are both decreased. The sensor works with low concentrations and high sensitivity value (37.7%), time

الجامعة المستنصرية – مجلة كلية التربية ٢٠٢٦ العدد الرابع

of response and recovery (tres=3.8, trec=4.3 sec) at concentration (19.5 ppm). Accordingly, sensor prepared from Ag_2O shows good sensitivity CO_2 due to its good synthetic characteristics.

Table 2: the values of response time (t_{res}) , recovery time (t_{rec}) and sensitivity (S%) with changing the gas concentration for all samples

Annealing temperature °C	Concentration (ppm)	Sensitivity (%)	Res. Time (sec)	Rec. Time (sec)
500	1.3	1	6.2	11.2
	5.0	1.2	3.9	2.1
	19.5	1.5	2.2	2.1
550	1.3	4.7	17.0	22.0
	5.0	5	10.7	9.2
	19.5	6	4.7	9.5
600	1.3	20	14.8	19.8
	5.0	33	11.7	13.3
	19.5	37.7	3.8	4.3
650	1.3	3	3.6	8.6
	5.0	4	13.3	7.6
	19.5	4.7	12.4	12.0

Figure (3) shows that the resistance increases with the increase in gas concentration, leading to increased sensor sensitivity.

Figure 3: Sensitivity change over time for best response to patterns

Conclusion

Ag₂O was prepared from the AgNH₃ material using electrochemical deposition method for 60 min and annealed at different temperatures (500, 550, 600, 650 °C), respectively. The XRD results showed that Ag₂O is polycrystalline with a cubic structure and the prevailing phase is level (111). The FESEM results demonstrated that the best regular crystalline structure of Ag₂O is at 600°C, which corresponds to the results of XRD. CO₂ sensor is also manufactured by depositing AL on Ag₂O using a thermal vacuum machine. Sensor sensitivity for membranes prepared is

calculated at the best synthetic structure at 600 °C. The highest sensitivity value is (37.7%) at the lowest time of response and recovery (tres=3.8, trec=4.3 sec).

References

- 1. P. N. Reddy, M. Reddy, J. F. Pierson and S. Uthanna, Characterization of silver oxide films formed by reactive RF sputtering at different substrate temperatures. ISRN Optics (2014). https://doi.org/10.1155/2014/684317.
- 2. V. Ovchinnikov, Reduction of silver oxide film in inert gas plasma, ISBN: 978-1-61208-495-4, (2016).
- 3. N. R. C. Raju, K. J. Kumar and A. Subrahmanyam, Physical properties of silver oxide thin films by pulsed laser deposition: effect of oxygen pressure during growth. J. Phys. D 42(13), 135411 (2009).
- 4. F. Hajakbari and M. Ensandoust, Study of thermal annealing effect on the properties of silver thin films prepared by DC magnetron sputtering. Acta Physica Polonica A 129, 4 (2016).
- 5. Tonelli, D., Scavetta, E., and Gualandi, I., Electrochemical Deposition of Nanomaterials for Electrochemical Sensing. Sensors, 19(5), 1186. doi:10.3390/s19051186, (2019)..
- Klug H. P. and Alexander L. E., X-ray diffraction procedures: for polycrystalline and amorphous materials. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd 99 -Edition, by Harold P. Klug, Leroy E. Alexander, pp. 992. ISBN 0-471- 49369-4. Wiley-VCH, , 1974: p. 992, May (1974).
- 7. A.u Takafumi, I.. Noriya and Sh. Woosuck, NO and NO₂ sensing properties of WO₃ and CO₃O₄ based gas sensors. Sensors, 2013. 13(9): p. 12467-12481.
- 8. L. Qingcheng, L. D., G. Shang, J. Dayong, Z. Jianxun, Q. Jieming and H. Jianhua, Room-temperature NH₃ sensors with high sensitivity and short response/recovery times. Chinese science bulletin, 59(4): p. 447-451, (2014).