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ABSTRACT
Multicollinearity is one of the essential and implicit problems in the regression analysis

due to its influence on the model estimators. The problem is the independent variables are
highly correlated, and the regression results are unclear. The purpose of this paper is to solve
this problem using one of the solutions available, one of these solutions is the ridge regression
of Least Absolute Deviation (LAD) estimators through adding a suggested ridge parameter as
modify ridge parameter of (Hoerl et al. (1975)) say (Kyxg). A simulation study was
performed to compare (Kyxg) and the suggested ridge parameter using Mean Square Error
(MSE) to determine the best one.

Keywords: Multicollinearity problem , Linear Regression , Ridge Regression , Least
Absolute Deviation, Variance Inflation Factor.
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1. Introduction

The multiple linear regression model, which is contains several independent variables and
one dependent variable, where the explanatory variables are normally assumed to be
independent. In actuality, however, the explanatory variables may have strong or almost
strong linear connections. The independence assumptions are no longer applicable in this
instance, resulting in the multicollinearity issue. %, one of the regression issues is that the
independent variables are highly correlated, making the regression results unclear ', as a
result, it is impossible to estimate the singular impacts of various variables in the regression
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equation since multicollinearity can be defined as a situation in which two or more
independent variables move simultaneously. As a result, it's difficult to determine which
independent variables are responsible for the observed change in the dependent variable ™,
the definition of the regression coefficient is the change in the independent variable leading to
a change in the dependent variable. The issue may be very difficult to discover, it is not a
specifications error that can be discovered through the check from the regression residual that
it is actually a modeling error that it is a case of imperfect data ..

There are several approaches to solving this problem, the most popular of which being Ridge
regression, which has several real-world benefits, which depends on the ridge parameter (k),
where many scientists have worked to estimate the ridge parameter and the first to estimate
the ridge parameter by Ordinary Least Squares Estimators (OLS) method It is Hoerl and
Kennard (1970) ™ where Ordinary Ridge Regression Estimators (OLS-ridge) by allowing
some bias to be introduced into the estimations of the regression coefficients.

Pfaffenber and Dielman (1989) 17 Investigated the performance of (LAD) method and ridge
regression separate, both are robust; however, each is better appropriate for a particular type
of problem when combined in a single estimation procedure. They attempted to estimate the
ridge parameter (k) using estimators (LAD) of each one of the parameters and variance of the
errors terms, that is, they used the same biasing parameters as Hoerl et al. (1975) 2% Still, as
an alternative to the variance of error terms and estimating parameters in the formula using
(OLS) method, they used the (LAD) estimations. When the independent variables are highly
collinear, and the error terms are asymmetric or own a large tail, Least Absolute Deviation
Ridge method extracts additional bias space to reduce the Mean Squared Error (MSE) of the
model (LAD) estimators 2°!,

Several researchers have suggested different ridge parameters from them: Hoerl and Kennard
(1970) ©! Hoerl et al. (1975) M, Lawless and Wang (1976) ™!, Kibria (2003) ™, Dorugade
and Kashid (2010) ), Muniz et al. (2012) ™ and others.

In this paper, get a new ridge parameter was proposed say (Kp), represents ridge parameter
Hoerl et al. (Kyxz) M with subtracting the variance inflation factor, then using simulation,
compare two estimators to determine which is the best by obtaining the least Mean Square
Error (MSE). The following is how the paper is structured: In section (2), we addressed the
concept of multicollinearity. The primary ideas for the OLS and the OLS ridge were
explained in section (3). Primary ideas for the (LAD) and the (LAD-ridge) have been
explained in Section (4), as well as the ridge parameters. Section (5) proposes a ridge
parameter. The efficiency of the ridge parameters was checked in section (6), and the results
were assessed using the simulation approach to compare these parameters, the result has been
analysis.

2. Multicollinearity Problem
The multiple linear regression model is one of the most commonly used in the regression
models and can be stated as follows !:-
Vi= Botfixi1tB2Xxixt...... Ppxipte;  I=12,....n (@)
where

p: is the number of explanatory (independent) variables.
n: is the number of observations.
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B : are the regression coefficients.
€;: is the errors model.
x: are the explanatory (independent) variables.
y;: are response (dependent) variables.
The problem with multiplicity of linearity is the independent variables are highly related so

that the regression results are unclear; where regression coefficient is interpreted as the
change in the response (independent) variable as a result of change in the independent
variable ),

Because near multi - collinearity can be thought of as a situation where two or more
explanatory variables move together, it is impossible to determine which of explanatory
variables is causing observed change in response variables, the unique influence of each
variable in the regression equation cannot be estimated ™.

Multicollinearity problem might be extremely difficult to identify. It is not a specification
error that the check regression residual can discover. It is, in fact, a modeling mistake. It's an
instance of faulty data .

The number of independent variables in the model is also critical, as the negative effect of
collinearity may be amplified, when the model has more independent variables 2.

And several different methods have been suggested to deal with the problem of multiplicity of
linearity.

3. Ordinary Least Squares Estimators (OLS)

The Ordinary Least Squares Estimators method is one of the earliest and most widely used
estimation methods for parameter estimation in multiple linear regression models, when the
data are independent, identical, and normally distributed; the (OLS) method produces
unbiased parameter estimates with minimum variance ! The (OLS) estimator method
minimizes the summation of the squares deviation as it is unbiased of the B as E(bo.s)=P, has
a minimal variability as V(by.s)= 02(X'X)~! ,that meets the L.b. of Rao-Gramere ing., the
residuals vector given by e=y-y all independent variables are orthogonal, so (by;s) is the best
linear unbiased estimators (BLUE) for B as follows:

ge= (Y -XB)(Y -XP)
=YY -BXY-YXB-YXB+BXXP
=Y'Y -2 BX'Y + BX'X B

The Least Squares estimate of the value (bo.s) which when substituted in equation (1)
minimizes €& with respect to § and setting the resultant matrix equation equal to zero, at the
same time replacing B by (by.s) the solution of this equations is:-

bos =(X'X)7'X'Y (2)
And irrespective with the distribution of error terms, the fitted values are obtained from
Y=Xby,s .
Many scientists wanted to discover different solutions to solve the multicollinearity problem,
the proposal of ridge parameters was one these method.
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3.1. Ordinary Ridge Regression Estimators
In the classic regression model, regression is assumed to be largely independent. However, in
a variety the situations of the real world (e.g., engineering (Hoerl & Kennard (1970)), the
regressors are frequently found to be nearly dependent. The matrix X'X is then has ill
condition (i.e. det(X"X)=0). As a result, if X'X is ill condition, (bys) is highly susceptible to
various errors, making effective statistical inference extremely difficult for practitioners to
overcome 4,
Different methods for dealing with multiple linear data have been proposed by modifying the
Least Squares method to allow the introduction of bias in the regression coefficient
estimators. The ridge regression method is one of the most frequently used techniques. For
any K >0, we define the ridge regression estimator (bgg ) as follows:-

brr=(X'X + KD)71X'Y (3)

The analyzer selects the K value on some acceptable criteria stated according to Hoerl and
Kennard /.
The ordinary ridge estimator produces a series of solutions rather than a single solution to the
multicollinearity problem. These solutions are dependent on the value of K (ridge parameter);
no explicit optimal value for K has been discovered; several random choices for this
parameter have been proposed %,

4. Least Absolute Deviation (LAD)

Least Absolute Deviation approach is robust alternate to the (OLD) method, mainly when
the data followed the non-normal distribution with outliers, because data sets display certain
characteristics that may not always meet the (OLS) requirements, there are two requirements
related to kurtosis and skewness. Regarding kurtosis, (OLS) assumes that the distribution of
the residuals is normal. However, the datasets may be messy; for example, the (OLS)
regression could be lesser effective than some robust regression techniques due to heavy tails,
i.e., high kurtosis or skewed residual distribution, when the distribution of the residuals has a
large kurtosis, The (LAD) regression method might be more effective than the (OLS) method.
Regarding skewness, the distribution of residual of real datasets is not always completely
symmetrical. If the distribution is skewed (for example by having a few large outliers on one
side), outliers affect the (LAD) less than the (OLS), because (LAD) is way less sensitive to
outliers than (OLS) &I,

The (LAD) method is classified as a robust regression technique as well may be considered
to be a regression techniques family and is not a single particular regression technique, in
which the robust regression seeks to also be robust to outlier observations 2.

The (LAD) approach has become one of the most widely used strategies for robust regression
analysis. In comparison to (OLS) estimates, (LAD) estimates are less impacted by extreme
values. However, the behavior of (LAD) estimates is less well known, especially for small
samples, and the inference procedure is more difficult ). Inference in the (LAD) estimation is
a popular study topic, in employing the (LAD) estimate, Koenker and Bassett ™ suggested
the wald, Lagrange multiplier (LM) tests, and likelihood ratio (LR). These methods can be
used to test the coefficient significance in a regression model. When data are independent but
not necessarily normal, Dielman and Pfaffenberger ! investigate regression inference using
(LAD) estimation. However, while (LAD) estimator has been suggested as a substitute for
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least squares regression, it is a technique that is not widely used and thus may be regarded as
unconventional.
In the (LAD) method, parameter estimates are the parameter values that minimize to:

Zm — (a+ bXD)|
In this simple regression instance, a and b are the parameters, and this may be generalized to
multiple regression. The estimate concept (LAD) is not more complicated than the estimation
concept (OLS). In actuality, the absolute value of a residual is a more basic measure of its size
than the squared residual, but it is more involved in the actual computation of the estimations
(LAD). There are no formulae for estimating LAD. Fortunately, many technigues exist to
calculate them [,

4.1. Least Absolute Deviations Ridge regressions

Despite the fact that the method for calculating the LAD is powerful, However, there is
still the possibility of having a highly multi-linear relationship between the explanatory
variables in the linear regression analysis, where Least Absolute Deviation Ridge (LAD-
ridge) represents the ridge parameter estimation using (LAD) method instead of estimating it
using (OLS) method, when the independent variables are extremely collinear and error terms
are asymmetric or heavy-tailed, the goal of using LAD ridge is to decrease the (MSE) of the
LAD estimators by allowing greater space for bias.
Multicollinearity problem exists naturally in most real-world data sets. The question is: to
what extent must the problem of medium and strong multicollinearity be somehow addressed.
One of the easiest ways ,if one needs to keep all the independent variableslin the model, is to
use ridge estimates method, that was first used by Hoerl and Kennard (1970) © in regression
analysis.
An extensive study has been conducted on the performance of (LAD) method and ridge
regression individually; both are robust, but each is suited to a different kind of problem. In an
early effort to combine the two approaches into a single estimation procedure, Pfaffenberger
and Dielman (1989) ™! attempted to use (LAD) estimation to estimation the ridge biasing
parameter (K), for both parameters and the variance of the error terms. In other words, they
applied the same biasing parameter as Hoerl et al.(1975) utilized (LAD) estimates rather than
(OLS) estimates for the parameters and variance of error terms in the calculation they used
(LAD) estimator.
Generally, the OLS ridge estimators are less robust than the LAD ridge estimators at the
presence of asymmetry of error terms. For every increase in the asymmetry of the error terms,
the relative efficiency of LAD ridge estimators to OLS ridge estimators grows.
The linear regression model is:-

yi= x;B+e; ,i=1,2,...,n 4)

where ¢; are iid random errors, x; is a known (px 1) x 1 vector of predictors and £ is a
(px 1) x 1 unknown parameter vector. Then, let us take a full rank augmented linear model
like:-

6= |2 <[5 ©
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E(£)=0, E(s£")=%, E(v)=0, E(vu")= Q, E(ev")=0, where v~ N(0,62), and K>0. The LAD
estimation of B=( By, B2,..., Bp)' of (5) is

p= argmin B=(B1r ﬁp)r(2?=1|}’i —x{fl +VK 25')=1| ﬁjl)
Some of the formulas for finding (K) depend on the estimated parameter of the standardized
variables in the regression models (4)

1
Y=X B+€=S' Az a+ €

1
The singular value decomposition of the standardized design matrix is X=S'Az U', with S a
px n orthogonal matrix, A a pxp diagonal matrix of the eigenvalue of X'X and U a pxp
orthogonal matrix of the eigenvectors of X'X, and a = U’B. The (LAD) estimation of «,
a*=(@, ,&")", is the (LAD) parameter estimation of the model 2%,
1, 5 Az

ol e |[a]l ©

There are several solutions to solve the multicollinearity problem; one of these solutions is
ridge regression, which is regarded as one of the methods of the bias estimates, where the
ridge parameters help give bigger space for bias to minimize MSE. Below are several
previously suggested ridge estimates for the (LAD) estimator.

4.2. Ridge Parameters

The Least Absolute Deviation ridge estimator does not give a single solution to the linearity
problem but instead a set of options dependent on (K) (ridge parameter). Although it cannot
figured, an exact ideal value for (K), numerous random values for this ridge parameter have
been proposed. Several of these alternatives can be summed up as follows:-

e Hoerl and Kennard (1970) ! that (K;) minimizes MSE(&(K)) which is defined as
MSE (&(R)) = 02 3P yyp K@

i

i= 1(A +K; )2 =1 (2;+K;)?
Where the A; are eigenvalue of the matrix X'X, @; is the i*" element of @ and estimated by
(LAD) where a=U'g and U is the orthogonal matrix, K; is represent the ridge parameters

which is estimation by unbiased estimation (LAD) where

Ri_;l (7)
Where 2= (ni’,_l) is the residual mean square estimate, which is unbiased (LAD) estimator
of 2.
e Hoerl and Kennard (1970) ® suggested (K) to be (denoted by Ky )
Ri=zg— ®)

Where @,,,, 1S represented the maximum element of &@. Hoerl and Kennard claimed that (8)
given smaller (MSE) than (LAD) method.
e Hoerl et al. (1975) % proposed (K) to be (denoted by Ky x5)

Ruxs —Zifi ©)

aa

e Lawless and Wang (1976) ™ proposed (K) to be (denoted by K, )
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Y =2
Ruv=zmz (10)
e Kibria (2003) ™ suggested (K) based on arithmetic mean is denoted by (Kap), and

geometric is denoted by (K,,) of (62/&_2) defined as the follows:-

Ra=~ ZLZ—; (11)
Rom=—"— (12)
a1, @)z
e Muniz et al. (2012) *3 proposed estimators of (K):-
Rim12= Median (qii) (13)
Amaz 82

Where i —, Amax represented maximum eigenvalue of the matrix X'X.

—P)62+Amax @

5. Proposed Ridge Estimator

Our contribution in this research is the use of the Variance Inflation Factor (VIF), which is an
indicator of the existence of a multiple linear relationship between the independent variables,
where the (VIF) is calculated for each independent variable in the model. If (VIF) is large, this
is an indication that there is a strong multiple linear relationships between the independent
variables in the model.

Dorugade and Kashid (2010) ™!, based on (9), suggested (K) to be denoted by (k)
5 = 1
Kp= max (0 Ky — TR ) (14)

Where (Kp) is represent modification (Kyxg) in eq. (9) by subtracted W from
j/)max

(Kyxg). This amount, however varies with the size of the sample (n) used and strength of the
multicollinearity in the model. Dorugade and Kashid (2010) !, worked on estimation
(Kyxg) by (OLS) method, and we will estimation (Kyxg) by (LAD) method.

Where VIF; = ﬁ , j=1,2,...,p is Variance Inflation Factor of j" regressor and R? is the
coefficient of determination of X; on other covariates, X1, Xz, X3, ..., Xi Xis1, ..., Xp.

The coefficient of determination Rj2 can be defined as the ratio as the proportion of total
variability in the response (dependent) variable y, which can be calculated by the set of
predictors X1,Xa,...,Xp. It is clear that when the value of R? is close to one, it means that the
model fits the data well, in such a cases the observed and predicted values became close to
each other, in this case the error will be small ¢,

6. Simulation study

This chapter, describes the simulation research to make a comparison between the
performance of the estimated ridge parameters to determine which ridge parameter is the most
efficient and has the least number of parameters (MSE). In this paper, comparison between
the proposed parameter (Kp) and the ridge parameter (Kyxp), where the (MSE) is used as a
criterion for quality throughout study to get the best estimator.

Ll



Sl sl 2022........ A Al A3l A - 4 puaiiccal) daalal)

Six independent variables were used p=6 in the linear regression model, which represents the
following model in (1):-

McDonald and Galarneau (1975) ™ and Gibbons (1981) ® the explanatory variables were
generated by using the following:-

x;j=(1— pz)% €ij + pEy; ,i=1,2,...n ,j=1,2,....p (15)

where €; j~N(O,02) is independent and p represents the correlation between two independent
variables which is inactivated by p?, in this paper it is assumed that it is fo=£1=8,=B3=Ps =
Bs=Ps=1, and correlation values (0.2 , 0.7 , 0.9) with different sample sizes (n=25, 60, 100)
and (o2 = 0.8, 2.5, 5). The experiment was repeated 500 times. Using MATLAB (R2019b)
program was utilized to make a comparison between two ridge parameters to determine which
one is the best to solve the multicollinearity problems.

The MSE values for two ridge estimators are shown in the tables below.

Table 1. The values of MSE at p=0.2.

n Estimator o2 =
0.8 25 °

25 Ryxs CVEYY NZYY ATy 7
ED  OTAN « OYEA IED

R Ryks AT CYOAY VAV %
ED v 00.Y . OYAQ . g401

Yoo KHKB CIVYY TAGL CYYAY RD
Kp +.OTA] <OYYA «.£9.4

Table 2. The values of MSE at p=0.7.

n Estimatol a? Best
0.8 2.5 °

25 Kyks . YYoo C AR CAv.g Ruxs
Kp 0.7359 0.8170 L o. .0

e Ruxs IAYe 2R CAVY Ry
Ky JCIAR LOVEY L8949

' Ryks £IVA <AA NN R,
K, CoENY vVt CEAVY
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Table 3. The values of MSE at p=0.9.
n Estimator a? Best
0.8 25 s
25 Ruxa CNTE) NI . Aaave Ruxs
K, 0.7346 0.7911 SRR
T Ruxs CIAV) LYY EY CAVTE K,
X, Cofen Love. AV
Ve Ruxa SV NV CVVEY K,
X, . ova. Lo «EAOY

6.1.  Analysis of simulation results

Tables 1, 2, and 3 give the simulation results of MSE of ridge parameter (K), and we can see
that:

In all experiments and all sample sizes K}, is the best, accept in experiment 2, 3 and in (n=25)
with strong correlation and variance the best Ky x5, these results confirm the effectiveness of
the suggested estimator K.
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