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A B S T R A C T 

       Multicollinearity is one of the essential and implicit problems in the regression analysis 

due to its influence on the model estimators. The problem is the independent variables are 

highly correlated, and the regression results are unclear. The purpose of this paper is to solve 

this problem using one of the solutions available, one of these solutions is the ridge regression 

of Least Absolute Deviation (LAD) estimators through adding a suggested ridge parameter as 

modify ridge parameter of (Hoerl et al. (1975)) say ( ̂   ). A simulation study was 

performed to compare ( ̂   ) and the suggested ridge parameter using Mean Square Error 

(MSE) to determine the best one.  

Keywords: Multicollinearity problem , Linear Regression , Ridge Regression , Least 

Absolute Deviation, Variance Inflation Factor. 

 

 أقل انحراف مطمقدراسة أداء اثنين من مقدرات الحرف باستخدام 
 

 عواطف رزوقي الدبيسي .د       محمدتمارة واثب 
 قسم الرياضيات -كمية التربية -الجامعة المستنصرية 

  الخلاصه
                                                                                                             تعد العلاقة الخطية المتعددة إحدى المشكلات الأساسية والضمنية في تحميل الانحدار نظر ا لتأثيرىا عمى مقدرات النموذج. 

، ونتائج الانحدار غير واضحة. الغرض من ىذا البحث ىو حل المشكمة ىي أن المتغيرات المستقمة مترابطة بشكل كبير
( LAD، وأحد ىذه الحمول ىو الانحدار الحرف لمقدرات الاقل انحراف مطمق )ىذه المشكمة باستخدام أحد الحمول المتاحة

إجراء  (. تم   ̂ ) تدعى(Hoerl et al ( .5791 )من خلال إضافة معممة الحرف المقترح كتعديل معممة الحرف لـ )
 ( لتحديد أفضميا. MSEالمقترحة باستخدام متوسط الخطأ التربيعي ) الحرف( ومعممة    ̂ دراسة محاكاة لمقارنة )

     .عامل تضخم ,أقل انحراف مطمق, أنحدار الحرف ,الانحدار الخطي,مشكمة التعدد الخطي  الكممات المفتاحيه:
                                                                                                                    

1. Introduction 

     The multiple linear regression model, which is contains several independent variables and 

one dependent variable, where the explanatory variables are normally assumed to be 

independent. In actuality, however, the explanatory variables may have strong or almost 

strong linear connections. The independence assumptions are no longer applicable in this 

instance, resulting in the multicollinearity issue. 
[12]

, one of the regression issues is that the 

independent variables are highly correlated, making the regression results unclear 
[6]

, as a 

result, it is impossible to estimate the singular impacts of various variables in the regression 
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equation since multicollinearity can be defined as a situation in which two or more 

independent variables move simultaneously. As a result, it's difficult to determine which 

independent variables are responsible for the observed change in the dependent variable 
[1]

, 

the definition of the regression coefficient is the change in the independent variable leading to 

a change in the dependent variable. The issue may be very difficult to discover, it is not a 

specifications error that can be discovered through the check from the regression residual that 

it is actually a modeling error that it is a case of imperfect data 
[6]

. 

 There are several approaches to solving this problem, the most popular of which being Ridge 

regression, which has several real-world benefits, which depends on the ridge parameter (k), 

where many scientists have worked to estimate the ridge parameter and the first to estimate 

the ridge parameter by Ordinary Least Squares Estimators (OLS) method It is Hoerl and 

Kennard (1970) 
[9] 

where Ordinary Ridge Regression Estimators (OLS-ridge) by allowing 

some bias to be introduced into the estimations of the regression coefficients. 

 Pfaffenber and Dielman (1989) 
[17]

 Investigated the performance of (LAD) method and ridge 

regression separate, both are robust; however, each is better appropriate for a particular type 

of problem when combined in a single estimation procedure. They attempted to estimate the 

ridge parameter (k) using estimators (LAD) of each one of the parameters and variance of the 

errors terms, that is, they used the same biasing parameters as Hoerl et al. (1975) 
[10]

. Still, as 

an alternative to the variance of error terms and estimating parameters in the formula using 

(OLS) method, they used the (LAD) estimations. When the independent variables are highly 

collinear, and the error terms are asymmetric or own a large tail, Least Absolute Deviation 

Ridge method extracts additional bias space to reduce the Mean Squared Error (MSE) of the 

model (LAD) estimators 
[20]

. 

 Several researchers have suggested different ridge parameters from them: Hoerl and Kennard 

(1970) 
[9]

, Hoerl et al. (1975) 
[10]

, Lawless and Wang (1976) 
[13]

, Kibria (2003) 
[12]

, Dorugade 

and Kashid (2010) 
[5]

, Muniz et al. (2012) 
[15]

 and others. 

 In this paper, get a new ridge parameter was proposed say ( ̂  , represents ridge parameter 

Hoerl et al. ( ̂   )
 [10]

 with subtracting the variance inflation factor, then using simulation, 

compare two estimators to determine which is the best by obtaining the least Mean Square 

Error (MSE). The following is how the paper is structured: In section (2), we addressed the 

concept of multicollinearity. The primary ideas for the OLS and the OLS ridge were 

explained in section (3). Primary ideas for the (LAD) and the (LAD-ridge) have been 

explained in Section (4), as well as the ridge parameters. Section (5) proposes a ridge 

parameter. The efficiency of the ridge parameters was checked in section (6), and the results 

were assessed using the simulation approach to compare these parameters, the result has been 

analysis. 
 

2. Multicollinearity Problem 

     The multiple linear regression model is one of the most commonly used in the regression 

models and can be stated as follows [16]
:- 

  =   +     +     +……+     +        , =1,2,….,n                                         (1) 

where  
 

               p: is the number of explanatory (independent) variables. 

               n: is the number of observations.  
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                 : are the regression coefficients.  

                 : is the errors model. 

                : are the explanatory (independent) variables. 

                 : are response (dependent) variables. 

    The problem with multiplicity of linearity is the independent variables are highly related so 

that the regression results are unclear; where regression coefficient is interpreted as the 

change in the response (independent) variable as a result of change in the independent 

variable 
[6]

. 

 Because near multi - collinearity can be thought of as a situation where two or more 

explanatory variables move together, it is impossible to determine which of explanatory 

variables is causing observed change in response variables, the unique influence of each 

variable in the regression equation cannot be estimated 
[1]

.    

     Multicollinearity problem might be extremely difficult to identify. It is not a specification 

error that the check regression residual can discover. It is, in fact, a modeling mistake. It's an 

instance of faulty data 
[6]

. 

The number of independent variables in the model is also critical, as the negative effect of 

collinearity may be amplified, when the model has more independent variables 
[2]

. 

And several different methods have been suggested to deal with the problem of multiplicity of 

linearity. 

 

3. Ordinary Least Squares Estimators (OLS) 

    The Ordinary Least Squares Estimators method is one of the earliest and most widely used 

estimation methods for parameter estimation in multiple linear regression models, when the 

data are independent, identical, and normally distributed; the (OLS) method produces 

unbiased parameter estimates with minimum variance 
[7]

 The (OLS) estimator method 

minimizes the summation of the squares deviation as it is unbiased of the β as E(    )=β, has 

a minimal variability as V(    )=           ,that meets the L.b. of Rao-Gramere inq., the 

residuals vector given by  =y-y all independent variables are orthogonal, so (    ) is the best 

linear unbiased estimators (BLUE) for β as follows:  

                  ' = (Y - X β)
'
(Y - X β)     

                      =Y'Y - β'X'Y - Y'X β - Y'X β + β'X'X β       

               =Y'Y - 2 β'X'Y + β'X'X β                                                                                                

   

The Least Squares estimate of the value (      which when substituted in equation (1) 

minimizes  '  with respect to β and setting the resultant matrix equation equal to zero, at the 

same time replacing β by (      the solution of this equations is:-  

        =                                                                   (2) 

 And irrespective with the distribution of error terms, the fitted values are obtained from 

 ̂=      
[9]

. 

 Many scientists wanted to discover different solutions to solve the multicollinearity problem, 

the proposal of ridge parameters was one these method. 
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3.1. Ordinary Ridge Regression Estimators 

 In the classic regression model, regression is assumed to be largely independent. However, in 

a variety the situations of the real world (e.g., engineering (Hoerl & Kennard (1970)), the 

regressors are frequently found to be nearly dependent. The matrix X'X is then has ill 

condition (i.e. det(X'X)≈0). As a result, if X'X is ill condition, (    ) is highly susceptible to 

various errors, making effective statistical inference extremely difficult for practitioners to 

overcome 
[2]

. 

Different methods for dealing with multiple linear data have been proposed by modifying the 

Least Squares method to allow the introduction of bias in the regression coefficient 

estimators. The ridge regression method is one of the most frequently used techniques. For 

any K ≥ 0, we define the ridge regression estimator (    ) as follows:-    

    =          X'Y                                            (3)   

 The analyzer selects the K value on some acceptable criteria stated according to Hoerl and 

Kennard 
[9]

. 

 The ordinary ridge estimator produces a series of solutions rather than a single solution to the 

multicollinearity problem. These solutions are dependent on the value of K (ridge parameter); 

no explicit optimal value for K has been discovered; several random choices for this 

parameter have been proposed 
[16]

. 

 

4. Least Absolute Deviation (LAD) 

      Least Absolute Deviation approach is robust alternate to the (OLD) method, mainly when 

the data followed the non-normal distribution with outliers, because data sets display certain 

characteristics that may not always meet the (OLS) requirements, there are two requirements 

related to kurtosis and skewness. Regarding kurtosis, (OLS) assumes that the distribution of 

the residuals is normal. However, the datasets may be messy; for example, the (OLS) 

regression could be lesser effective than some robust regression techniques due to heavy tails, 

i.e., high kurtosis or skewed residual distribution, when the distribution of the residuals has a 

large kurtosis, The (LAD) regression method might be more effective than the (OLS) method. 

Regarding skewness, the distribution of residual of real datasets is not always completely 

symmetrical. If the distribution is skewed (for example by having a few large outliers on one 

side), outliers affect the (LAD) less than the (OLS), because (LAD) is way less sensitive to 

outliers than (OLS) 
[3]

.  

 The (LAD) method is classified as a robust regression technique as well may be considered 

to be a regression techniques family and is not a single particular regression technique, in 

which the robust regression seeks to also be robust to outlier observations 
[18]

. 

 The (LAD) approach has become one of the most widely used strategies for robust regression 

analysis. In comparison to (OLS) estimates, (LAD) estimates are less impacted by extreme 

values. However, the behavior of (LAD) estimates is less well known, especially for small 

samples, and the inference procedure is more difficult 
[7]

. Inference in the (LAD) estimation is 

a popular study topic, in employing the (LAD) estimate, Koenker and Bassett 
[11]

 suggested 

the wald, Lagrange multiplier (LM) tests, and likelihood ratio (LR). These methods can be 

used to test the coefficient significance in a regression model. When data are independent but 

not necessarily normal, Dielman and Pfaffenberger 
[4]

 investigate regression inference using 

(LAD) estimation. However, while (LAD) estimator has been suggested as a substitute for 
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least squares regression, it is a technique that is not widely used and thus may be regarded as 

unconventional. 

 In the (LAD) method, parameter estimates are the parameter values that minimize to: 

∑|          | 

 In this simple regression instance, a and b are the parameters, and this may be generalized to 

multiple regression. The estimate concept (LAD) is not more complicated than the estimation 

concept (OLS). In actuality, the absolute value of a residual is a more basic measure of its size 

than the squared residual, but it is more involved in the actual computation of the estimations 

(LAD). There are no formulae for estimating LAD. Fortunately, many techniques exist to 

calculate them [19]
. 

 

4.1. Least Absolute Deviations Ridge regressions  

     Despite the fact that the method for calculating the LAD is powerful, However, there is 

still the possibility of having a highly multi-linear relationship between the explanatory 

variables in the linear regression analysis, where Least Absolute Deviation Ridge (LAD-

ridge) represents the ridge parameter estimation using (LAD) method instead of estimating it 

using (OLS) method, when the independent variables are extremely collinear and error terms 

are asymmetric or heavy-tailed, the goal of using LAD ridge is to decrease the (MSE) of the 

LAD estimators by allowing greater space for bias.  

 Multicollinearity problem exists naturally in most real-world data sets. The question is: to 

what extent must the problem of medium and strong multicollinearity be somehow addressed. 

One of the easiest ways ,if one needs to keep all the independent variables1in the model, is to 

use ridge estimates method, that was first used by Hoerl and Kennard (1970) 
[9] 

in regression 

analysis. 

 An extensive study has been conducted on the performance of (LAD) method and ridge 

regression individually; both are robust, but each is suited to a different kind of problem. In an 

early effort to combine the two approaches into a single estimation procedure, Pfaffenberger 

and Dielman (1989) 
[17]

 attempted to use (LAD) estimation to estimation the ridge biasing 

parameter (K), for both parameters and the variance of the error terms. In other words, they 

applied the same biasing parameter as Hoerl et al.(1975) utilized (LAD) estimates rather than 

(OLS) estimates for the parameters and variance of error terms in the calculation  they  used 

(LAD) estimator. 

Generally, the OLS ridge estimators are less robust than the LAD ridge estimators at the 

presence of asymmetry of error terms. For every increase in the asymmetry of the error terms, 

the relative efficiency of LAD ridge estimators to OLS ridge estimators grows. 

The linear regression model is:- 

          =   
  +                                            ,  =1,2,…,n            (4) 

 where    are iid random errors,    is a known (p      vector of predictors and   is a 

(p      unknown parameter vector. Then, let us take a full rank augmented linear model 

like:- 

         [
 
 
]=[

 

√   
]   + [

 
 
]                                                             (5) 
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E(  =0, E(    =Σ, E( )=0, E(    = Ω, E(    =0, where  ʋ~ N(o,  ), and K>0. The LAD 

estimation of  =(        …,   )' of (5) is  

 ̂=                      (∑ |     
  |  √  ∑ |   | 

 
   

 
    

 Some of the formulas for finding (K) depend on the estimated parameter of the standardized 

variables in the regression models (4) 

Y=X  +Ɛ = S'  
 

   + Ɛ 

 The singular value decomposition of the standardized design matrix is X=S'  
 

  U', with S a 

p   orthogonal matrix, Λ a p p diagonal matrix of the eigenvalue of X'X and U a p p 

orthogonal matrix of the eigenvectors of X'X, and      . The (LAD) estimation of  , 

  =( ̂    ̂  ', is the (LAD) parameter estimation of the model
 [20]

, 

[
 
 
]=[

     
 

 

  √    
] [
  

 
]+[

 
 
]                                               (6) 

 There are several solutions to solve the multicollinearity problem; one of these solutions is 

ridge regression, which is regarded as one of the methods of the bias estimates, where the 

ridge parameters help give bigger space for bias to minimize MSE. Below are several 

previously suggested ridge estimates for the (LAD) estimator. 

 

4.2. Ridge Parameters 

 The Least Absolute Deviation ridge estimator does not give a single solution to the linearity 

problem but instead a set of options dependent on (K) (ridge parameter). Although it cannot 

figured, an exact ideal value for (K), numerous random values for this ridge parameter have 

been proposed. Several of these alternatives can be summed up as follows:- 

 Hoerl and Kennard (1970) 
[9] 

that (Ki) minimizes MSE( ̂     which is defined as 

MSE ( ̂  ̂     ∑
  

     ̂  
 

 
    + ∑

 ̂ 
   ̂ 

 

     ̂  
 

 
    

Where the    are eigenvalue of the matrix X'X,  ̂  is the     element of  ̂ and estimated by 

(LAD) where  =U'  and U is the orthogonal matrix,  ̂  is represent the ridge parameters 

which is estimation by unbiased estimation (LAD) where 

 ̂ =
 ̂ 

 ̂ 
                                                                  (7) 

Where  ̂ =
 ̂  ̂

       
 is the residual mean square estimate, which is unbiased (LAD) estimator 

of   . 

 Hoerl and Kennard (1970) 
[9] 

suggested (K) to be (denoted by  ̂   ) 

 ̂  =
 ̂ 

 ̂   
                                                                               (8) 

Where  ̂    is represented the maximum element of  ̂. Hoerl and Kennard claimed that (8) 

given smaller (MSE) than (LAD) method. 

 Hoerl et al. (1975) 
[10] 

proposed (K) to be (denoted by  ̂   ) 

 ̂   =
   ̂ 

 ̂  ̂
                                                                          (9) 

 Lawless and Wang (1976) 
[13] 

proposed (K) to be (denoted by  ̂  ) 
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 ̂  =
   ̂ 

 ̂       ̂
                                                                   (10) 

 Kibria (2003) 
[12] 

suggested (K) based on arithmetic mean is denoted by ( ̂   , and 

geometric is denoted by ( ̂    of ( ̂
 

 ̂ 
 ⁄   defined as the follows:- 

 ̂  = 
 

 
 ∑

 ̂ 

 ̂ 
 

 
                                                                          (11) 

 ̂  =
 ̂ 

 ∏  ̂ 
  

   
 
 
 

                                                                        (12) 

 Muniz et al. (2012) 
[15] 

proposed estimators of (K):- 

 ̂    = Median (
 

  
                                                                (13) 

Where   =
      ̂

 

      ̂        ̂ 
  

 ,      represented maximum eigenvalue of the matrix X'X. 

 

5. Proposed Ridge Estimator 

 Our contribution in this research is the use of the Variance Inflation Factor (VIF), which is an 

indicator of the existence of a multiple linear relationship between the independent variables, 

where the (VIF) is calculated for each independent variable in the model. If (VIF) is large, this 

is an indication that there is a strong multiple linear relationships between the independent 

variables in the model. 

  Dorugade and Kashid (2010) 
[5]

, based on (9), suggested (K) to be denoted by ( ̂ )  

 ̂ = max (    ̂      
 

          
 )                                               (14) 

 Where ( ̂   is represent modification ( ̂     in eq. (9) by subtracted 
 

          
 from 

( ̂    . This amount, however varies with the size of the sample (n) used and strength of the 

multicollinearity in the model. Dorugade and Kashid (2010)
 [5]

, worked on estimation   

  ̂     by (OLS) method, and we will estimation   ̂     by (LAD) method. 

 Where      = 
 

    
    ,  = 1, 2,…,p is Variance Inflation Factor of     regressor and   

  is the 

coefficient of determination of    on other covariates, X1, X2, X3, …, Xi, Xi+1, …, Xp . 

 The coefficient of determination   
  can be defined as the ratio as the proportion of total 

variability in the response (dependent) variable y, which can be calculated by the set of 

predictors X1,X2,…,Xp. It is clear that when the value of    is close to one, it means that the 

model fits the data well, in such a cases the observed and predicted values became close to 

each other, in this case the error will be small 
[16]

.  

 

6. Simulation study 

 This chapter, describes the simulation research to make a comparison between the 

performance of the estimated ridge parameters to determine which ridge parameter is the most 

efficient and has the least number of parameters (MSE). In this paper, comparison between 

the proposed parameter ( ̂   and the ridge parameter   ̂    , where the (MSE) is used as a 

criterion for quality throughout study to get the best estimator.  
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 Six independent variables were used p=6 in the linear regression model, which represents the 

following model in (1):- 

 McDonald and Galarneau (1975) 
[14]

 and Gibbons (1981) 
[8]

 the explanatory variables were 

generated by using the following:-  

    =       
 

      + ρ                      ,  =1,2,…,n  ,  =1,2,…,p     (15) 

where     N(0,  ) is independent and ρ represents the correlation between two independent 

variables which is inactivated by   , in this paper it is assumed that it is   =  =  =  =   

  =  =1, and correlation values (0.2 , 0.7 , 0.9) with different sample sizes (n=25, 60, 100) 

and (   = 0.8, 2.5, 5). The experiment was repeated 500 times. Using MATLAB (R2019b) 

program was utilized to make a comparison between two ridge parameters to determine which 

one is the best to solve the multicollinearity problems. 

 The MSE values for two ridge estimators are shown in the tables below. 

 

Table 1. The values of MSE at ρ=0.2. 

Best    Estimator n 

2 2.5 0.8 

 ̂  226900 2296.0 229709  ̂    25 

22.06. 22.570 22.902  ̂  

 ̂   229699      229209            229059  ̂    23 

2276.9 22.006 22..25  ̂  

 ̂  229509 229062 229900  ̂    333 

227626 22.000 22.506  ̂  

 

Table 2. The values of MSE at ρ=0.7. 

Best    Estimator n 

2 2.5 0.8 

 ̂    226927 220099 2295..  ̂    25 

22.22.      0.8170      0.7359  ̂  

 ̂  220005 229066 22905.  ̂    23 

227626 22.070 22.702  ̂  

 ̂  

 

229909 229620 229906  ̂    333 

227099 22.072 22.720  ̂  
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Table 3. The values of MSE at ρ=0.9. 

Best    Estimator n 

2 2.5 0.8 

 ̂     22660.   229629    229570  ̂    25 

22.200 0.7911 0.7346  ̂  

 ̂  

 

220097 229079 229090  ̂    23 

22709. 22.072 22.729  ̂  

 ̂  

  

229970 2290.5 229909  ̂    333 

2270.0 22.000 22.562  ̂  

   

6.1.  Analysis of simulation results  

Tables 1, 2, and 3 give the simulation results of MSE of ridge parameter (K), and we can see 

that: 

 In all experiments and all sample sizes  ̂  is the best, accept in experiment 2, 3 and in (n=25) 

with strong correlation and variance the best  ̂   , these results confirm the effectiveness of 

the suggested estimator  ̂ .  
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