L-open sets in bitopological spaces

Luay Al- Sweedy * Reyadh Delfi Ali **

*Department of Mathematics, Faculty of Science Babyloon University, Iraq ** Department of Mathematics, Faculty of Education AL-Qadisiyia University, Iraq Reyadh_delphi@yahoo.co.uk

المستخلص:

دراسة نوع جديد من المجموعات المفتوحة في فضاءات التبولوجيا مع دراسة بعض خواصها.

Abstract:

The authors introduce some new open sets in bitopological spaces and study some of their basic properties.

1.Introduction:

The concept of bitopological spaces was initiated by Kelly[1].Let (X,T_1,T_2) be a bitopological spaces. For $A \subset X$ set by $cl_i(A)$ and $int_i(A)$ we denote the T_i – closure and T_i – interior of A for i = 1, 2.

2.1Definition:

A subset A in bitopological space (X,T_1,T_2) will be termed L -open iff there exists an T_1 -open set U such that $U \subset A \subset cl_2(U)$.

The family of all L -open sets in bitopological space (X,T_1,T_2) is denoted by LO(X). It's clear that every T_1 -open set is L -open but the converse is not true. The complement of L -open set will be called a L-closed set.

The following theorems give some properties of L -open sets.

2.2Theorem:

Let (X,T_1,T_2) be a bitopological space. Let $A \subset X$, A is L -open iff $A \subset cl_2(Int_1(A))$.

Proof:

Let
$$A \subset cl_2(Int_1(A))$$
.Put $U = Int_1(A)$, we have $U \subset A \subset cl_2(U)$.

Conversely. Let A be L -open set. Then $U \subset A \subset cl_2(U)$ for some T_1 -open set U .But $U \subset Int_1(A)$ and thus $cl_2(U) \subset cl_2(Int_1(A))$. Hence $A \subset cl_2(U) \subset cl_2(Int_1(A))$.

2.3 Theorem :

Let (X, T_1, T_2) be a bitopological space. Let *A* and *B* be two subsets of *X* .then

1) Let $\{A_{\alpha}\}_{\alpha\in\Lambda}$ be a collection of L -open sets in a bitopological space X .then $\bigcup_{\alpha\in\Lambda}A_{\alpha}$ is L -open.

2) Let A be L -open in the bitopological space X and suppose $A \subset B \subset cl_2(A)$.then B is L -open.

Proof:

1) For each $\alpha \in \Lambda$, we have an T_1 -open U_{α} an such that $U_{\alpha} \subset A_{\alpha} \subset cl_2(U_{\alpha})$.

Then
$$\bigcup_{\alpha \in \Lambda} U_{\alpha} \subset \bigcup_{\alpha \in \Lambda} A_{\alpha} \subset \bigcup_{\alpha \in \Lambda} cl_2(U_{\alpha}) \subset cl_2\left(\bigcup_{\alpha \in \Lambda} U_{\alpha}\right)$$
. Hence, let $U = \bigcup_{\alpha \in \Lambda} U_{\alpha}$. Then $U \subset \bigcup_{\alpha \in \Lambda} A_{\alpha} \subset cl_2(U)$.

2) Since A is L -open, there exists an T_1 -open set U such that $U \subset A \subset cl_2(U)$. Then $U \subset B$. But $cl_2(A) \subset cl_2(U)$ and thus $B \subset cl_2(U)$. Hence $U \subset B \subset cl_2(U)$ and B is

L -open.

<u>2.4 Theorem :</u>

Let $\mu = \{B_{\alpha}\}$ be a collection of sets in X such that,

1) $T_1 \subset T_2$

2) If $B \in \mu$ and $B \subset U \subset cl_2(B)$, then $U \in \mu$. Then $LO(X) \subset \mu$. Thus LO(X) is the smallest class of sets in X satisfying (1) and (2).

Proof:

Let $A \in L.0.(X)$.then $O \subset A \subset cl_2(O)$ for some T_1 -open set O. Then $O \in \mu$ by (1) and thus $A \in \mu$ by (2).

2.5 Theorem :

Let $A \subset Y \subset X$ where X is a bitopological space and Y is a subspace of bitopological space (X, T_1, T_2) . Let $A \in L.O.(X)$, then. $A \in L.O.(Y)$

Proof:

 $O \subset A \subset cl_2(O)$, where O is T_1 -open in X .now $O \subset Y$ and thus $O = O \cap Y \subset A \cap Y \subset Y \cap cl_2(O)$ or $O \subset A \subset cl_{2Y}(O)$. Since $O = O \cap Y$, O is T_1/Y -open in Y and the theorem is proved.

2.6 definition :

A Set $M_x \subset X$ is said to be *L*-neighborhood of a point $x \in X$ iff there exists a $A \in L.O.(X)$ such that $A \subset M_x$.

2.7 Theorem:

 $A \in LO(X)$ Iff A is L-neighborhood of each $x \in A$.

Proof: easy.

2.8 definition :

A point $x \in X$ is said to be *L*-limit point of *A* iff for each $U_x \in L.O.(X), U_x \cap A/\{x\} \neq \phi$.

The following theorems give some properties of *L*-limit points.

2.9 Theorem :

A is *L*-closed iff it contains the set of its *L*-limit points.

Proof: Easy

The set of all *L*-limit points of *A* is said to be the *L*-derived set of *A* and is denoted by L - der(A).

2.10 Theorem :

If A, B by subsets of bitopological space (X, T_1, T_2) . Then,

(1) if
$$A \subset B$$
, then $L - der(A) \subset L - der(B)$.
(2) $L - der(A) \cup L - der(B) \subset L - der(A \cup B)$.
(3) $L - der(A \cap B) \subset L - der(A) \cap L - der(B)$.
(4) $L - der(L - der(A))/A \subset L - der(A)$.
(5) $L - der(A \cup L - der(A)) \subset A \cup L - der(A)$.

Proof:

We prove parts (4),(5), and the others follow directly from definitions.

(4) Let $P \in L - der(L - der(A)) / A$ and $U \in L.O.(X)$. Then $U \cap L - der(A) / \{P\} \neq \phi$.

Let $q \in U \cap L - der(A)/\{p\}$. Now since $q \in L - der(A)$ and $q \in U$, $U \cap A/\{q\} \neq \phi$.

Let $r \in U \cap A/\{q\}$. Then $r \neq p$ for $r \in A$ and $p \notin A$. Therefore $U \cap A/\{p\} \neq \phi$ implies that $p \in L - der(A)$.

(5) Let $b \in L - der(A \cup L - der(A))$. If $b \in A$, the result is obvious. So let $b \in L - der(A \cup L - der(A))/A$. Then, if $U \in L.O.(X)$ containing b, $U \cap L - der(A \cup L - der(A))/\{b\} \neq \phi$, then $U \cap L - der(A)/\{b\} \neq \phi$. Now it follows similarly from (4) that $U \cap A/\{b\} \neq \phi$. Therefore $b \in L - der(A)$.

Thus in any case $L - der(A \cup L - der(A)) \subset A \cup L - der(A)$.

2.11 definition :

Let *A* be a subset of a bitopological space (X,T_1,T_2) , $A \cup L - der(A)$ is defined to be the *L*-closure of *A* and is denoted by L - cl(A).

The following theorem gives some properties of *L*-closure sets.

2.12 Theorem :

Let (X, T_1, T_2) be a bit opological space. Let A and B be two subsets of X. Then

(1)
$$A \subset L - cl(A) = A \cup L - der(A)$$

(2) If $A \subset B$, then $L - cl(A) \subset L - cl(B)$.

(3)
$$L-cl(A) \cup L-cl(B) \subset L-cl(A \cup B)$$
.

(4)
$$L-cl(A\cap B) \subset L-cl(A)\cap L-cl(B)$$
.

(5)
$$L-cl(\phi) = \phi \cdot L-cl(X) = X$$
.

(6)
$$L - cl(L - cl(A)) = L - cl(A)$$
.

(7) A is a L-closed iff L-cl(A) = A, L-cl(A) is L-closed.

(8) $L-cl(A) = \bigcap \{F, F \text{ is } L-closed \text{ and } A \subset F \}$, (L-cl(A) is the smallest L-closed set containing A).

Proof:

We prove parts (2),(6),(7) and the others follow directly from definitions.

(2) Since $A \subset B$ and by theorem 2.10 part (1) $L - der(A) \subset L - der(B)$. Then $A \cup L - der(A) \subset B \cup L - der(B)$, therefore $L - cl(A) \subset L - cl(B)$.

(6) $L - cl(L - cl(A)) = L - cl(A \cup L - der(A)) = (A \cup L - der(A)) \cup L - der(A \cup L - der(A)) = (A \cup L - der(A)) = L - cl(A)$

(7) By theorem 2.9, A is L-closed iff $L - der(A) \subset A$, i.e., iff L - cl(A) = A.

We introduce the following definition of the L-interior of a set which is similar to that of standard interior.

2.13 definition :

A point $x \in X$ is said to be a *L*-interior point of *A* iff there exists $U \in L.O.(X)$ containing *x*, such that $U \subset A$. The set of all *L*-interior points of *A* is said to be the *L*-interior of *A* and is denoted by L-int(A).

The following theorem gives properties of *L*-interior sets.

2.14 Theorem :

For any subsets *A*, *B* of bitopological space (X, T_1, T_2) . Then, (1) L - int(A) is *L*-open. (2) L - int(A) is the largest *L*-open set contained in *A*. (3) *A* is *L*-open iff A = L - int(A). (4) L - int(L - int(A)) = L - int(A). (5) L - int(A) = A/L - der(X/A). (6) I) X/L - int(A) = L - cl(X/A). II) $L - int(X/A) \subset X/L - int(A)$. (7) I) X/L - cl(A) = L - int(X/A). II) If $A \subset B$, then $L - int(A) \subset L - int(B)$. (8) I) $L - int(A) \cup L - int(B) \subset L - int(A \cup B)$ II) $L - int(A \cap B) \subset L - int(A) \cap L - int(B)$. (9) I) $\bigcup_{\alpha \in A} L - int(A_{\alpha}) \subset L - int(A)/B \subset L - int(A)/L - int(B)$. Froof:

We prove part (1),(2),(5),(6) and the others follow directly from definitions.

(1) Let $x \in L - int(A)$. Then $U \subset A$ for some $U \in L.O.(X)$, containing x. Also $y \in U$, then $y \in L - int(A)$, therefore $U \subset L - int(A)$. Hence L - int(A) is

L –neighborhood of x. Therefore by theorem 2.7, L - int(A) is L-open.

(2) Let $V \in L.O.(X)$, $V \subset A$ then $y \in V$, implies that $y \in A$, so that $y \in L-int(A)$.

Therefore $V \subset L - int(A)$. Now the result follows from part (1).

(5) Let $x \in A$. Then $x \notin L - der(X/A)$, then exists L-open set U containing x such that $U \cap X/A = \phi$, implies that $x \in U \subset A$, then $x \in L - int(A)$.

Conversely, let $x \in L - int(A)$, then $x \in L - der(X/A)$ for L - int(A) is L-open and $L - int(A) \cap X/A = \phi$. Therefore L - int(A) = A/L - der(X/A).

(6) I)
$$X/L - int(A) = X/(A/L - der(X/A)) = (X/A) \cup L - der(X/A) = L - cl(X/A).$$

II)
$$L-\operatorname{int}(X/A) \subset X/A \subset L-cl(X/A) = X/L-\operatorname{int}(A)$$
.

<u>**3**</u>*L***–Boundary,** *L***–Exterior and** *L***–Frontier Operators :**

In this section we define *L*-boundary, *L*-exterior and *L*-frontier of a set ,we study these three operators and prove some standard results.

The following are elementary definitions which are used throughout the work.

3.1 Definition :

Let *A* be a subset of a bitopological space (X,T_1,T_2) , A/L - int(A) is said to be the *L*-boundary of *A* and is denoted by L-b(A).

3.2 Definition :

Let A be a subset of a bitopological space (X,T_1,T_2) , L-cl(A)/L-int(A) is said to be the L-frontier of A and is denoted by L-fr(A).

3.3 Definition :

Let *A* be a subset of a bitopological space $(X,T_1,T_2), L-int(X/A)$ is said to be the *L*-exterior of *A* and is denoted by L-ext(A).

<u>3.4 Theorem :</u>

For any subsets A, B of bitopological space (X,T_1,T_2) . Then,

(1) **I**)
$$A = L - int(A) \cup L - b(A)$$
,

II) $L - \operatorname{int}(A) \cap L - b(A) = \phi$,

- (2) A is L-open iff $L-b(A) = \phi$,
- (3) $L-b(L-int(A))=\phi$,
- (4) $L int(L b(A)) = \phi$,
- (5) L-b(L-b(A)) = L-b(A),
- (6) $L-b(A) = A \cap L-b(X/A)$,
- (7) **I**) L-b(A) = L-der(X/A),
 - **II**) L-der(A) = L-b(X/A),
- (8) If $A \subset B$, then $L-b(B) \subset L-b(A)$,
- **(9) I)** $L-b(A \cup B) \subset L-b(A) \cup L-b(B)$,

II)
$$L-b(A)\cap L-b(B)\subset L-b(A\cap B)$$
,

Proof:

We prove part (4),(6),(7I),(8) and the others follows directly from definitions and above theorems.

(4) If possible, let $x \in L - int(L - b(A))$, then $x \in L - b(A)$, also $L - b(A) \subset A$.

Therefore $x \in L - int(L-b(A)) \subset L - int(A)$. Hence $x \in L - int(A) \cap L - b(A)$, which contradicts parts (1II). Consequently $L - int(L-b(A)) = \phi$.

(6)
$$L-b(A) = A/L - int(A) = A/(X/L - cl(X/A)) = A \cap L - cl(X/A).$$

(7I)
$$L-b(A) = A/L - int(A) = A/(A/L - der(X/A)) = L - der(X/A).$$

(8) Let $x \in A$, $x \in L-b(B)$, then $x \notin L-int(B)$, implies that $x \notin L-int(A)$.

Then $x \in L-b(A)$, therefore $L-b(B) \subset L-b(A)$.

3.5 Theorem :

For any subsets A, B of bitopological space (X,T_1,T_2) . Then,

(1) I) $L - cl(A) = L - int(A) \cup L - fr(A)$, II) $L - int(A) \cap L - fr(A) = \phi$,

(2)
$$L-b(A) \subset L-fr(A)$$
,

(3)
$$L - fr(A) = L - b(A) \cup L - der(A)$$
,

(4) A is L-open iff L - fr(A) = L - der(A),

(5)
$$L-fr(A) = L-cl(A) \cap L-cl(X/A)$$
,

(6)
$$L - fr(A) = L - fr(X/A)$$
,

(7)
$$L - fr(A)$$
 is L -closed,

(8)
$$L - fr(L - fr(A)) = L - fr(A)$$
,

Proof:

We prove parts (3),(7),(8) and the others follows directly from definitions and above theorems.

(3) $L - int(A) \cup L - fr(A) = L - cl(A) = A \cup L - der(A) = L - int(A) \cup L - b(A) \cup L - der(A)$. **Therefore** $L - fr(A) = L - b(A) \cup L - der(A)$.

(7)

$$L - cl(L - fr(A)) = L - cl(L - cl(A) \cap L - cl(X/A)) \subset L - cl(L - cl(A)) \cap L - cl(L - cl(X/A)) = L - cl(A) \cap L - cl(X/A) \subset L - fr(A).$$
(8)

$$L - fr(L - fr(A)) = L - cl(L - fr(A)) \cap L - cl(X/L - fr(A)) = L - cl(L - fr(A)) = L - fr(A).$$

<u>3.6 Theorem :</u>

For any subsets A , B of bitopological space (X,T_1,T_2) . Then,

(1)
$$L - ext(A)$$
 is L -open set.
(2) $L - ext(A) = X/ L - cl(A)$,
(3) $L - ext(L - ext(A)) = L - int(L - cl(A))$,
(4) I) $L - ext(A \cup B) = L - int(X/(A \cup B))$,
II) $L - ext(A) \cup L - ext(B) \subset L - ext(A \cup B)$,

Proof:

We prove parts (2),(3),(4I) and the others follows directly from definitions and above theorems.

(2)
$$L - ext(A) = L - int(X/A) = X/L - cl(A)$$
.
(3)
 $L - ext(L - ext(A)) = L - ext(X/L - cl(A)) = X/L - int(X/L - cl(A)) = L - int(L - cl(A))$.

(4I) $L - ext(A \cup B) = L - int(X/(A \cup B))$ $L - int((X/A) \cap (X/B)) \subset L - int(X/A) \cap L - int(X/B) = L - ext(A) \cap L - ext(B).$ 4 Examples :

In this section, we shall show that the converse of the above theorems are not true.

4.1 Remark :

The revers in clusion in the theorem 2.10 par (2),(3) are not true as shown by the following example.

4.2 Example :

Let $X = \{a, b, c\}$ and $T_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ $T_2 = \{X, \phi, \{a\}, \{b, c\}\}$. Then it can be that (X,T_1,T_2) verified bitopological is space and $L.O.(X) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$.Take $A = \{a\}, B = \{c\}$. Then $L - der(A) = \phi, L - der(B) = \phi$. Also $L - der(A \cup B) = L - der(\{a, c\}) = \{c\} \not\subset L - der(A) \cup L - der(B) = \phi$ **Take** $A = \{a, c\}, B = \{b, c\}$. **Then** $L - der(A) = \{c\}, L - der(B) = \{c\}$. Again $L - der(A \cap B) = L - der(\{c\}) = \phi$. Therefore $L-der(A)\cap L-der(B) = \{c\} \not\subset L-der(A\cap B) = \phi$. **Take** $A = \{b, c\}, B = \{b\}$ **. Then** $L - cl(A) = \{b, c\}, L - cl(B) = \{b, c\}$ **. Therefore** $L-cl(A) = L-cl(B) = \{b, c\}$, but $A \neq B$. **Take** $A = \{b\}$, $L - cl(A) = \{b, c\}$, and $L - der(L - cl(A)) = L - der(\{b, c\}) = \{c\}$. **Hence** $L - cl(A) = \{b, c\} \not\subset L - der(L - cl(A)) = \{c\}.$ 4.3 Remark :

The reverse inclusion in theorem 2.12 parts (3) and (4) are not true as shown by the following example. 4.4 Example :

Let $X = \{a, b, c\}$ and $T_1 = \{X, \phi, \{a\}, \{b, c\}\}, T_2 = \{X, \phi, \{b\}, \{a, c\}\}$. Then it be verified that (X, T_1, T_2) is a bitopological space and $L.O.(X) = \{X, \phi, \{a\}, \{b, c\}, \{a, c\}\}$. Take $A = \{a\}, B = \{b\}$. Then $L - cl(A) = \{a\}, L - cl(B) = \{b\}$. Again $A \cup B = \{a, b\}$ and $L - cl(A \cup B) = X$. Therefore $L - cl(A \cup B) = X \not\subset L - cl(A) \cup L - cl(B) = \{a, b\}$. Take $A = \{b, c\}, B = \{a, b\}$. Then $L - cl(A) = \{b, c\}, L - cl(B) = X$, and $A \cap B = \{b\}, L - cl(A \cap B) = \{b\}$. Therefore $L - cl(A) \cap L - cl(B) = \{b, c\} \not\subset L - cl(A \cap B) = \{b\}$. **4.5 Remark :**

It is obvious that every T_1 -open is *L*-open, but the converse is not true as the following example show.

4.6 Example :

Consider (X,T_1,T_2) **defined in example 4.4. Take** $A = \{a,c\}$ **is** *L***-open set but not**

 T_1 -open.

4.7 Remark :

If L - int(A) = L - int(B) does not imply A = B as shown by the following example.

4.8 Example :

Consider (X, T_1, T_2) **defined in example 4.2. Take** $A = \{a\}, B = \{a, c\}$ **. Then** $L - int(A) = \{a\}, L - int(B) = \{a\}$ **. Therefore** L - int(A) = L - int(B) **but** $A \neq B$ **.**

4.9 Remark :

The revers inclusion in theorem 2.14 parts (8I),(8II) are not true as shown by the following example .

<u>4.10 Example :</u>

Consider (X,T_1,T_2) defined in example 4.2.**Take** $A = \{c\}, B = \{b\}$ **.Then**

$$L - \operatorname{int}(A) = \phi, L - \operatorname{int}(B) = \{b\}, \text{but } L - \operatorname{int}(A \cup B) = \{b, c\}, \text{therefore}$$
$$L - \operatorname{int}(A \cup B) = \{b, c\} \not\subset L - \operatorname{int}(A) \cup L - \operatorname{int}(B) = \{b\}.$$

Let $X = \{a, b, c, d\}$ and $T_1 = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$, $T_2 = \{X, \phi, \{a\}, \{c\}, \{a, b\}, \{c, d\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. Then it can be verified that (X, T_1, T_2) is a bitopological space and

 $LO(X) = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}, \{a, b\}, \{b, c, d\}\}. \text{ Take } A = \{b, c\}, B = \{a, b, d\} \text{ , then } L - \operatorname{int}(A) = \{b, c\}, L - \operatorname{int}\{B\} = \{a, b\}, L - \operatorname{int}(A \cap B) = \phi \text{ . Therefore } L - \operatorname{int}(A) \cap L - \operatorname{int}(B) = \{b\} \not\subset L - \operatorname{int}(A \cap B) = \phi \text{ .}$

4.11 Remark :

The revers inclusions in theorem 3.4 parts (9I, II) are not true as shown by the following example.

4.12 Example :

Consider (X,T_1,T_2) **defined in example 4.10. Take** $A = \{a,c\}, B = \{b,d\}$, **then** $L - b(A) = \{c\}, L - b(B) = \{b,d\}$ **. Therefore** $L - b(A) \cup L - b(B) = \{c,b,d\} \not\subset L - b(A \cup B) = \phi$.

Take $A = \{b\}, B = \{a, b, c\}$ and $L - b(A) = \{b\}, L - b(B) = \phi, L - b(A \cap B) = \{b\}$. Then $L - b(A \cap B) = \{b\} \not\subset L - b(A) \cap L - b(B) = \phi$.

4.13 Remark :

If $A \subset B$ does not imply $L - fr(A) \subset L - fr(B)$ as shown by the following example.

<u>4.14 Example :</u>

Consider (X, T_1, T_2) **defined in example 4.2. Take** $A = \{c\}B = \{b, c\}$ **and** $L - fr(A) = \{c\}, L - fr(B) = \phi$, **therefore** $A \subset B$, **but** $L - fr(A) = \{c\} \not\subset L - fr(B) = \phi$.

4.15 Remark :

The revers inclusion in theorem 3.6 parts (4) are not true as shown by the following example .

4.16 Example :

Consider (X, T_1, T_2) define in example 4.10. Take $A = \{a, b\}, B = \{a, c\}$, so $A \cap B = \{a\}$. Then $L - ext(A) = \phi, L - ext(B) = \phi.L - ext(A \cap B) = \{b, c, d\}$. Therefore $L - ext(A \cap B) = \{b, c, d\} \not\subset L - ext(A) \cup L - ext(B) = \phi$.

Reference.

1)Kelly J.C. "Bitopological spaces" Proc.London Math. 13(1963), 71-89.