On Fuzzy b-hyper Connected Space

Assist. Prof. Dr. Munir Abdul. Khalik AL-Khafaji Al-Mustansiriyah University / College of Education / Department of Mathematics

Abstract

This paper is devoted to introduce the notion of fuzzy extremely disconnected space in fuzzy topological spaces on fuzzy sets, and study some theorems and properties on fuzzy b- extremely disconnected space and **fuzzy b-hyper connected space**.

حول الفضاء الضبابي المتصل(b-hyper)

أ.م.د.منير عبد الخالق الخفاجي الجامعة المستنصرية / كلية التربية / قسم الرياضيات

المستخلص:

في هذا البحث قدمنا مفهوم الفضاء الضبابي غير المتصل (extremely) في الفضاء التبولوجي الضبابي وعلى مجموعة ضبابية ودراسة بعض النظريات والخواص حول الفضاء الضبابي غير المتصل (b-hyper) .

Introduction:

The concept of fuzzy set was introduced by Zadeh in his classical paper [12] in 1965. The fuzzy topological space on fuzzy set was introduced by Chakrabarty and Ahsanullal [2] in 1992, Fatteh and Bassan [5] in 1985 introduce the notions of fuzzy connected and disconnected spaces, Benchalli and Jenifer [1] has introduced the concepts of fuzzy b-open and fuzzy b-closed . The purpose of this paper is to introduce and study two stronger forms of fuzzy disconnectedness.

Preliminaries

A fuzzy set \tilde{A} in a universe set X is characterization by a membership function $\mu_{\tilde{A}}: X \rightarrow I$, which an associated with each point x in X a real number in closed interval I = [0, 1]. The collection of all fuzzy subset in X will be denote by I^{X} [12]. $p(\tilde{A}) = \{ \tilde{B}: \tilde{B} \in I^{x} \text{ and } \tilde{B} \subseteq \tilde{A} \}$ which $p(\tilde{A})$ is called fuzzy power set [2]. For any two fuzzy sets \tilde{B} , \tilde{C} in X we write, $\forall x \in X$ $\tilde{B} \subseteq \tilde{C}$ if $\mu_{\tilde{B}}(x) \leq \mu_{\tilde{C}}(x)$, $\tilde{B} = \tilde{C}$ if $\mu_{\tilde{B}}(x) = \mu_{\tilde{C}}(x)$, \tilde{B}^{c} is the complement of \tilde{B}

 $\mu_{\tilde{D}}(x) = \min\{\mu_{\tilde{B}}(x), \mu_{\tilde{C}}(x)\} \text{ and } \tilde{E} = \tilde{B} \cup \tilde{C} \text{ if } \mu_{\tilde{E}}(x) = \max\{\mu_{\tilde{B}}(x), \mu_{\tilde{C}}(x)\}[3,11].$

with membership function $\mu_{\tilde{B}^c}(x) = 1$ - $\mu_{\tilde{B}}(x)$, $\tilde{D} = \tilde{B} \cap \tilde{C}$ if

The support of a fuzzy set \tilde{B} in \tilde{A} will be denoted by

Supp(\tilde{B}) = { $x \in X : \mu_{\tilde{B}}(x) > 0$ } [6].

Finally a fuzzy point x_r in X is a fuzzy set with membership function

 μx_r (x) = r, if x = v where $0 < r \le 1$ and μx_r (x) = 0, if $x \ne v$, such that

v is called the support of x_r and r the value of x_r [9], $x_r \in \tilde{A}$ iff

 $\mu x_r(\mathbf{x}) \le \mu_{\tilde{A}}(\mathbf{x}) \text{ and } x_r \notin \tilde{A} \text{ iff } \mu x_r(\mathbf{x}) > \mu_{\tilde{A}}(\mathbf{x}) [8].$

A family $\tilde{\tau}$ of fuzzy sets of \tilde{A} in X is called a fuzzy topology on \tilde{A} if $\tilde{\varphi}$ and \tilde{A} belong to $\tilde{\tau}$ and $\tilde{\tau}$ is closed with respect to arbitrary union and finite intersection [2].The members of $\tilde{\tau}$ are called fuzzy open sets and their complements are fuzzy closed sets [2]. A fuzzy set \tilde{B} which is both fuzzy open and fuzzy closed is called fuzzy clopen set [4] .We shall denote a fuzzy topological space on fuzzy set (fts. for short) by ($\tilde{A}, \tilde{\tau}$). Let \tilde{B} be a fuzzy set in fts ($\tilde{A}, \tilde{\tau}$), then we define cl(\tilde{B}) = \cap { $\tilde{C}_i : \tilde{C}_i^c \in \tilde{\tau}$, $\tilde{B} \subseteq \tilde{C}_i$ } and int(\tilde{B}) = \cup { $\tilde{C}_i : \tilde{C}_i \in \tilde{\tau}$, $\tilde{C}_i \subseteq \tilde{B}$ } [2]. A fuzzy point x_r is said to be quasi coincident with a fuzzy set \tilde{B} in \tilde{A} denoted by $\tilde{B} q x_r$ if there exists $x \in X$ such that $\mu_{\tilde{B}}(x) + \mu x_r(x) > \mu_{\tilde{A}}(x)$ and denote by $\tilde{B} \tilde{q}^2 x_r$ if $\mu_{\tilde{B}}(x) + \mu x_r(x) \le \mu_{\tilde{A}}(x)$ (x), $\forall x \in X$ [2]. A fuzzy set \tilde{B} is said to be quasi coincident with a fuzzy set \tilde{C} in \tilde{A} denoted by $\tilde{B} q \tilde{C}$ if there exists $x \in X$ such that $\mu_{\tilde{B}}(x) + \mu_{\tilde{C}}(x) > \mu_{\tilde{A}}(x)$ (x) and denote by $\tilde{B} \tilde{q}^2 \tilde{C}$ if $\mu_{\tilde{B}}(x) + \mu_{\tilde{C}}(x) \le \mu_{\tilde{A}}(x)$, $\forall x \in X$ [2]. $\tilde{B} \tilde{q}^2 \tilde{B}^c$ [10].

1. Basic Definition and Some Results

Definition 1. 1[1]:

A fuzzy set \tilde{B} of fts (\tilde{A} , $\tilde{\tau})$ is said to be

- Fuzzy b-open set if $\tilde{B} \subseteq int(cl(\tilde{B})) \cup cl(int(\tilde{B}))$
- Fuzzy b-closed set if $int(cl(\tilde{B})) \cap cl(int(\tilde{B})) \subseteq \tilde{B}$

The family of fuzzy b-open sets is denoted by $FBO(\tilde{A})$ and the complement of a fuzzy b-open set is a fuzzy b-closed set .

Definition 1.2 [7] :

If $\,\tilde{B}$ is a fuzzy set in fts $(\tilde{A}$, $\tilde{\tau})$, then :

- The b-closure of B̃ is denoted by (bcl(B̃)) and defined by bcl(B̃) = ∩{ C̃_i : C̃^c_i ∈ FBO(Ã), B̃ ⊆ C̃_i }.
- The b-interior of \tilde{B} is denoted by $(bint(\tilde{B}))$ and defined by $bint(\tilde{B}) = \bigcup \{ \tilde{C}_i : \tilde{C}_i \in FBO(\tilde{A}), \tilde{C}_i \subseteq \tilde{B} \} .$

Definition 1.3:

A fuzzy set \tilde{B} of fts (\tilde{A} , $\tilde{\tau}$) is said to be :

- Fuzzy b-regular open set if $\tilde{B} = bint(bcl(\tilde{B}))$
- Fuzzy b-regular closed set if $\tilde{B} = bcl(bint(\tilde{B}))$.

Theorem 1.4 [7] :

If \tilde{B} , \tilde{C} are a fuzzy set in fts $(\tilde{A}$, $\tilde{\tau})$, then

- $int(\tilde{B}) \subseteq bint(\tilde{B}) \subseteq \tilde{B} \subseteq bcl(\tilde{B}) \subseteq cl(\tilde{B})$.
- $bint(\tilde{B} \cap \tilde{C}) = bint(\tilde{B}) \cap bint(\tilde{C})$.

Theorem 1.5 :

If \tilde{B} is a fuzzy set in fts (\tilde{A} , $\tilde{\tau}$) , then ;

- 1. $bint(\tilde{B}) = (bcl(\tilde{B}^c))^c$.
- 2. $bcl(\tilde{B}) = (bint(\tilde{B}^c))^c$.

Proof : (1) Since $bint(\tilde{B}) \subseteq \tilde{B}$ and $bint(\tilde{B})$ is a fuzzy b-open set.

Then $\tilde{B}^c \subseteq (bint(\tilde{B}))^c$ and $bcl(\tilde{B}^c) \subseteq (bint(\tilde{B}))^c$, hence

 $bint(\tilde{B}) \subseteq (bcl(\tilde{B}^c))^c \dots (*)$

Since $\tilde{B}^c \subseteq bcl(\tilde{B}^c)$ and $bcl(\tilde{B}^c)$ is a fuzzy b-closed set , then

 $(bcl(\tilde{B}^c))^c \subseteq \tilde{B}$, hence $(bcl(\tilde{B}^c))^c \subseteq bint(\tilde{B})$(**)

From (*) and (**) we get $bint(\tilde{B}) = (bcl(\tilde{B}^c))^c$.

(2) Obvious.

Theorem 1.6 [7] :

If \tilde{B} is a fuzzy set in fts $(\tilde{A}, \tilde{\tau})$, then ;

- **1.** \tilde{B} is a fuzzy b-closed set iff $\tilde{B} = bcl(\tilde{B})$.
- **2.** \tilde{B} is a fuzzy b-open set iff $\tilde{B} = bint(\tilde{B})$.

Theorem 1.7 :

If $(\tilde{A}, \tilde{\tau})$ is a fuzzy topological space , then :

- 1. The b-closure of a fuzzy b-open set is a fuzzy b-regular closed set .
- 2. The b-interior of a fuzzy b-closed set is a fuzzy b-regular open set .

Proof :(1) Let \tilde{B} be a fuzzy b-open set in (\tilde{A} , $\tilde{\tau}$) and

Since $bint(bcl(\tilde{B})) \subseteq bcl(\tilde{B})$, then $bcl(bint(bcl(\tilde{B}))) \subseteq bcl(\tilde{B})$(*)

Since $\tilde{B} \subseteq bcl(\tilde{B})$ and \tilde{B} is a fuzzy b-open set , then

 $\tilde{B} \subseteq bint(bcl(\tilde{B})), hence bcl(\tilde{B}) \subseteq bcl(bint(bcl(\tilde{B}))).....(**)$

From (*) and (**) we get $bcl(bint(bcl(\tilde{B}))) = bcl(\tilde{B})$.

(2) Obvious.

Theorem 1.8 :

A fuzzy set \tilde{B} of fts (\tilde{A} , $\tilde{\tau}$) is a fuzzy b-regular closed (b-regular open) set iff \tilde{B} is both fuzzy b-open set and fuzzy b-closed set .

Proof : Obvious.

Proposition 1.9:

If \tilde{B} is a fuzzy open set and \tilde{C} is a fuzzy b-open set in fts $(\tilde{A}, \tilde{\tau})$, then

 $\tilde{B} \cap \tilde{C}$ is a fuzzy b-open set in $(\tilde{A}, \tilde{\tau})$.

Proof: To prove $\tilde{B} \cap \tilde{C} = bint(\tilde{B} \cap \tilde{C})$.

Since $\tilde{B}=int(\tilde{B})$ and $\tilde{C}=bint(\tilde{C})$, then

 $\operatorname{int}(\tilde{B}) \cap \operatorname{bint}(\tilde{C}) \subseteq \operatorname{bint}(\tilde{B}) \cap \operatorname{bint}(\tilde{C}) = \operatorname{bint}(\tilde{B} \cap \tilde{C}).$

Hence $\tilde{B} \cap \tilde{C} \subseteq bint(\tilde{B} \cap \tilde{C})$ (*)

and since $bint(\tilde{B} \cap \tilde{C}) \subseteq \tilde{B} \cap \tilde{C}$ (**)

Then from (*) and (**) we get $\tilde{B} \cap \tilde{C} = bint(\tilde{B} \cap \tilde{C})$.

Thus $\tilde{B} \cap \tilde{C}$ is a fuzzy b-open set in \tilde{A} .

Corollary 1.10 :

If \tilde{B} is a fuzzy open subspace in $(\tilde{A}, \tilde{\tau})$ and \tilde{C} is a fuzzy b-open set in $(\tilde{A}, \tilde{\tau})$, then $\tilde{C} \cap \tilde{B}$ is a fuzzy b-open set in \tilde{B} .

Proof: Obvious .

Proposition 1.11:

If \tilde{B} is a fuzzy open subspace of $(\tilde{A}, \tilde{\tau})$ and \tilde{C} is a fuzzy b-open set in \tilde{B} .

Then there exists a fuzzy b-open set \tilde{D} in $(\tilde{A}, \tilde{\tau})$ such that $\tilde{C} = \tilde{D} \cap \tilde{B}$.

Proof: Obvious .

Definition 1.12 [7]:

A fuzzy set \tilde{B} in fts $(\tilde{A}, \tilde{\tau})$ is said to be fuzzy quasi neighborhood (fuzzy bquasi neighborhood) of a fuzzy point x_r in \tilde{A} , if there exists a fuzzy open set (fuzzy b-open set) \tilde{C} in $(\tilde{A}, \tilde{\tau})$ such that $x_r q \tilde{C}$ and $\tilde{C} \subseteq \tilde{B}$.

Theorem 1.13 [7] :

If \tilde{B} is a fuzzy set and x_r fuzzy point in fts $(\tilde{A}, \tilde{\tau})$, then $x_r \in bcl(\tilde{B})$ if and only if for every fuzzy b-quasi neighborhood of x_r is quasi coincident with \tilde{B} .

Proposition 1.14 [7] :

If \tilde{B} is a fuzzy set and \tilde{C} is a fuzzy b-open set in fts $(\tilde{A}, \tilde{\tau})$, then $\tilde{C} \, \tilde{q} \, \tilde{B}$ iff $\tilde{C} \, \tilde{q} \, bcl(\tilde{B})$.

Definition 1.15 [9]:

Let $(\tilde{A}, \tilde{\tau})$ be any fts and \tilde{B} be any fuzzy set of \tilde{A} . Define

 $\tilde{\tau}_{\tilde{B}} = \{ \tilde{B} \cap \tilde{C} : \tilde{C} \in \tilde{\tau} \}$. Then it is well known that $\tilde{\tau}_{\tilde{B}}$ is a fuzzy topology in \tilde{B} and the fts $(\tilde{B}, \tilde{\tau}_{\tilde{B}})$ is called a fuzzy subspace of $(\tilde{A}, \tilde{\tau})$.

2. On Fuzzy b-Separation Axioms :

Definition 2.1 :

A fts (\tilde{A} , $\tilde{\tau}$) is said to be :

- Fuzzy b-T₀ space if for each distinct fuzzy points x_r, y_s ∈ Ã, there exists fuzzy b-open set B̃ in (Ã, τ̃) such that x_r ∈ B̃, B̃ q̃ y_s or y_s ∈ B̃, B̃ q̃ x_r.
- Fuzzy b- \tilde{T}_1 space if for each distinct fuzzy points $x_r, y_s \in \tilde{A}$, there exists two fuzzy b-open sets \tilde{B}, \tilde{C} in $(\tilde{A}, \tilde{\tau})$ such that $x_r \in \tilde{B}, \tilde{B} \ \tilde{q} \ y_s$ and $y_s \in \tilde{C}, \qquad \tilde{C} \ \tilde{q} \ x_r.$
- Fuzzy b-T₂ space if for each distinct fuzzy points x_r, y_s ∈ Ã, there exists two fuzzy b-open sets B, C in (Ã, τ̃) such that x_r ∈ B, y_s ∈ C and B q̃ C.
- Fuzzy b-regular space if for each x_r ∈ Ã and each fuzzy closed set B̃ in (Ã, τ̃) such that x_r q̃ B̃, there exists two fuzzy b-open sets C̃, D̃ in (Ã, τ̃) such that x_r ∈ C̃, B̃ ⊆ D̃ and C̃ q̃ D̃.
- Fuzzy b-normal space if for each two fuzzy closed sets B
 ₁ and B
 ₂ in (Ã, *τ̃*) such that B
 ₁ *q̃* B
 ₂, there exists two fuzzy b-open sets C

 , D

 in (Ã, *τ̃*) such that B
 ₁ ⊆ C

 , B
 ₂ ⊆ D

 and C

 q̃ D

 .

Theorem 2.2 :

If $(\tilde{A}, \tilde{\tau})$ is a fuzzy b- $\tilde{T}_{i=0,1,2}$ space and \tilde{B} is a fuzzy open subset of $(\tilde{A}, \tilde{\tau})$, then $(\tilde{B}, \tilde{\tau}_{\tilde{B}})$ is a fuzzy b- $\tilde{T}_{i=0,1,2}$ space.

Proof : Obvious .

Theorem 2.3 :

If $(\tilde{A}, \tilde{\tau})$ is a fts, then the following statements are equivalents.

- **1.** $(\tilde{A}, \tilde{\tau})$ is a fuzzy b-regular space.
- **2.** For each $x_r \in \tilde{A}$ and each fuzzy closed set \tilde{B} in $(\tilde{A}, \tilde{\tau})$ such that $x_r \tilde{q} \tilde{B}$, there exists two fuzzy b-open sets \tilde{C} , \tilde{D} in $(\tilde{A}, \tilde{\tau})$ such that $x_r \in \tilde{C}$, $\tilde{B} \subseteq \tilde{D}$ and $\tilde{C} \tilde{q}$ bcl (\tilde{D}) .
- For each x_r ∈ Ã and each fuzzy open set B̃ in (Ã, τ̃) such that x_r ∈ B̃, there exists a fuzzy b-open set C̃ in (Ã, τ̃) such that x_r ∈ C̃ ⊆ bcl(C̃) ⊆ B̃.
- 4. For each x_r ∈ à and each fuzzy closed set B̃ in à such that x_r q̃ B̃, there exists two fuzzy b-open sets C̃, D̃ in (Ã, τ̃) such that x_r ∈ C̃, B̃ ⊆ D̃ and bcl(C̃) q̃ bcl(D̃).
- **5.** For each fuzzy set \tilde{B} and each fuzzy closed set \tilde{C} in $(\tilde{A}, \tilde{\tau})$ such that \tilde{B} \tilde{q} \tilde{C} , there exists two fuzzy b-open sets \tilde{D}_1 , \tilde{D}_2 in $(\tilde{A}, \tilde{\tau})$ such that $x_r \in \tilde{D}_1$, $\tilde{B} \subseteq \tilde{D}_2$ and $\tilde{D}_1 \tilde{q}$ \tilde{D}_2 .
- 6. For each fuzzy set \tilde{B}_1 and each fuzzy open set \tilde{B}_2 in $(\tilde{A}, \tilde{\tau})$ such that $\tilde{B}_1 \subseteq \tilde{B}_2$, there exists fuzzy b-open set \tilde{C} in $(\tilde{A}, \tilde{\tau})$ such that $\tilde{B}_1 \subseteq \tilde{C} \subseteq bcl(\tilde{C}) \subseteq \tilde{B}_2$.

Proof:

(1) \rightarrow (2) Let $x_r \in \tilde{A}$ and \tilde{B} be a fuzzy closed set in $(\tilde{A}, \tilde{\tau})$ such that $x_r \tilde{q}^* \tilde{B}$,

then there exists two fuzzy b-open sets \tilde{C} , \tilde{D} in $(\tilde{A}, \tilde{\tau})$ such that $x_r \in \tilde{C}$,

 $\tilde{B} \subseteq \tilde{D}$ and $\tilde{C} \ \hat{q}^{r} \ \tilde{D}$, hence by proposition 1.14 $\tilde{C} \ \hat{q}^{r} \ bcl(\tilde{D})$.

(2) \rightarrow (3) Let $x_r \in \tilde{A}$ and \tilde{B} be a fuzzy open set in (\tilde{A} , $\tilde{\tau}$) such that

 $x_r \in \tilde{B}$, then $x_r \tilde{q}^r \tilde{B}^c$ and there exists two fuzzy b-open sets \tilde{C} , \tilde{D} in $(\tilde{A}, \tilde{\tau})$ such that $x_r \in \tilde{C}$, $\tilde{B}^c \subseteq \tilde{D}$ and $\tilde{C} \tilde{q}^r$ bcl (\tilde{D}) , hence $\tilde{C} \tilde{q}^r \tilde{D}$.

This implies that $\tilde{C} \subseteq \tilde{D}^c$ and $bcl(\tilde{C}) \subseteq bcl(\tilde{D}^c) = \tilde{D}^c$

Therefore $x_r \in \tilde{C} \subseteq bcl(\tilde{C}) \subseteq \tilde{B}$.

(3) \rightarrow (4) Let $x_r \in \tilde{A}$ and \tilde{B} be a fuzzy closed set in $(\tilde{A}, \tilde{\tau})$ such that

 $x_r \hat{q}^{\tilde{c}} \tilde{B}$, then $x_r \in \tilde{B}^c$ and there exists fuzzy b-open set \tilde{C} in $(\tilde{A}, \tilde{\tau})$ such that $x_r \in \tilde{C} \subseteq bcl(\tilde{C}) \subseteq \tilde{B}^c$, hence $\tilde{B} \subseteq bint(\tilde{C}^c)$.

Since \tilde{C} is fuzzy b-open set and let $\tilde{D} = bint(\tilde{C}^c)$, then $\tilde{C} \ \hat{q} \ bcl(\tilde{D})$,

by proposition 1.14 and every fuzzy b-regular closed is fuzzy b-open set we get $bcl(\tilde{C}) \ \tilde{q} \ bcl(\tilde{D})$.

(4)→(5) Let B̃ be a fuzzy set and C̃ be a fuzzy closed set in (Ã, t̃) such that B̃ q̃ C̃, then for each x_r ∈ B̃, x_r q̃ C̃ and there exists two fuzzy b-open sets C̃₁, D̃₂ in (Ã, t̃) such that x_r ∈ C̃₁, B̃ ⊆ D̃₂ and bcl(C̃₁) q̃ bcl(D̃₂).
Since x_r ∈ C̃₁, then B̃ =∪ x_{ri} ⊆ ∪ C̃_{1i}, let D̃₁ = ∪ C̃_{1i} and D̃₁ q̃ D̃₂.
(5)→(6) Let B̃₁ be a fuzzy set and B̃₂ be a fuzzy open set in (Ã, t̃) such that B̃₁ ⊆ B̃₂, then B̃₁ q̃ B̃₂^c and there exists two fuzzy b-open sets C̃, D̃ in (Ã, t̃) such that B̃₁ ⊆ C̃, B̃₂^c ⊆ D̃ and C̃ q̃ D̃, hence C̃ ⊆ D̃^c.
This implies that bcl(C̃) ⊆ bcl(D̃^c) = D̃^c
(6)→(1) Let x_r ∈ Ã and B̃ be a fuzzy closed set in (Ã, t̃) such that

 $x_r \hat{q}^{\circ} \tilde{B}$, then $x_r \in \tilde{B}^c$ and there exists fuzzy b-open set \tilde{C} in $(\tilde{A}, \tilde{\tau})$ such that $x_r \in \tilde{C} \subseteq bcl(\tilde{C}) \subseteq \tilde{B}^c$, $\tilde{B} \subseteq bint(\tilde{C}^c)$ and $\tilde{C} \hat{q}^{\circ} bint(\tilde{C}^c)$.

Hence $(\tilde{A}, \tilde{\tau})$ is a fuzzy b-regular space .

Theorem 2.4 :

If $(\tilde{A}, \tilde{\tau})$ is a fts, then the following statements are equivalents.

- **1.** $(\tilde{A}, \tilde{\tau})$ is a fuzzy b-normal space.
- **2.** For each two fuzzy closed sets \tilde{B}_1 , \tilde{B}_2 in $(\tilde{A}, \tilde{\tau})$ such that $\tilde{B}_1 \,\tilde{q} \,\tilde{B}_2$, there exists two fuzzy b-open sets \tilde{C}_1 , \tilde{C}_2 in $(\tilde{A}, \tilde{\tau})$ such that $\tilde{B}_1 \subseteq \tilde{C}_1$, $\tilde{B}_2 \subseteq \tilde{C}_2$ and bcl $(\tilde{C}_1) \,\tilde{q} \,\tilde{C}_2$.
- **3.** For each fuzzy closed set \tilde{B}_1 and each fuzzy open set \tilde{B}_2 in $(\tilde{A}, \tilde{\tau})$ such that $\tilde{B}_1 \subseteq \tilde{B}_2$, there is a fuzzy b-open set \tilde{C} in $(\tilde{A}, \tilde{\tau})$ such that $\tilde{B}_1 \subseteq \tilde{C} \subseteq bcl(\tilde{C}) \subseteq \tilde{B}_2$.

Proof: (1) \rightarrow (2) Let \tilde{B}_1 , \tilde{B}_2 be a fuzzy closed sets in (\tilde{A} , $\tilde{\tau}$) such that

 $\tilde{B}_1 \, \tilde{q} \, \tilde{B}_2$, then there exists two fuzzy b-open sets \tilde{C}_1 , \tilde{C}_2 in (\tilde{A} , $\tilde{\tau}$) such that

 $\tilde{B}_1 \subseteq \tilde{C}_1$, $\tilde{B}_2 \subseteq \tilde{C}_2$ and $\tilde{C}_1 \ \hat{q} \ \tilde{C}_2$. Hence by proposition 1.14 bcl $(\tilde{C}_1) \ \hat{q} \ \tilde{C}_2$.

(2) \rightarrow (3) Let \tilde{B}_1 be a fuzzy closed set and \tilde{B}_2 be a fuzzy open set in ($\tilde{A}, \tilde{\tau}$) such

that $\tilde{B}_1 \subseteq \tilde{B}_2$, then $\tilde{B}_2^c \ \hat{q} \ \tilde{B}_1$ and there exists two fuzzy b-open sets \tilde{C} , \tilde{D} in $(\tilde{A}, \tilde{\tau})$

such that $\tilde{B}_1 \subseteq \tilde{C}$, $\tilde{B}_2^c \subseteq \tilde{D}$ and $bcl(\tilde{C}) \ \hat{q} \ \tilde{D}$, hence $\tilde{C} \ \hat{q} \ \tilde{D}$(*)

by (*) we get
$$\tilde{C} \subseteq \tilde{D}^c$$
 then $bcl(\tilde{C}) \subseteq bcl(\tilde{D}^c) = \tilde{D}^c$

Therefore $\tilde{B}_1 \subseteq \tilde{C} \subseteq bcl(\tilde{C}) \subseteq \tilde{B}_2$.

(3) \rightarrow (1) Let \tilde{B}_1 , \tilde{B}_2 be a fuzzy closed sets in (\tilde{A} , $\tilde{\tau}$) such that

 $\tilde{B}_1 \, \tilde{q} \, \tilde{B}_2$, then $\tilde{B}_1 \subseteq \tilde{B}_2^c$ and there exists fuzzy b-open set \tilde{C} in $(\tilde{A}, \tilde{\tau})$ such that $\tilde{B}_1 \subseteq \tilde{C} \subseteq bcl(\tilde{C}) \subseteq \tilde{B}_2^c$, hence $\tilde{B}_2 \subseteq bint(\tilde{C}^c)$.

Since bint(\tilde{C}^c) is fuzzy b-open set and bint(\tilde{C}^c) $\subseteq \tilde{B}_2^c$, then there exists two fuzzy b-open sets \tilde{C} , bint(\tilde{C}^c) such that $\tilde{B}_1 \subseteq \tilde{C}$, $\tilde{B}_2 \subseteq bint(\tilde{C}^c)$ and $\tilde{C} \hat{q} bint(\tilde{C}^c)$. Hence ($\tilde{A}, \tilde{\tau}$) is a fuzzy b-normal space.

3. Fuzzy b-extremely Disconnected Space

Definition 3.1:

A fts (\tilde{A} , $\tilde{\tau}$) is said to be fuzzy b-extremely disconnected space iff the b-closure of every fuzzy b-open set is a fuzzy b-open set

i.e if $\tilde{B} \in FBO(\tilde{A}) \rightarrow bcl(\tilde{B}) \in FBO(\tilde{A})$.

Example 3.2 :

Let X = {a, b, c}, $\tilde{A} = \{(a, 0.5), (b, 0.5), (c, 0.5)\},\$ $\tilde{B}_{1} = \{(a, 0.5), (b, 0.0), (c, 0.0)\}, \tilde{B}_{2} = \{(a, 0.0), (b, 0.5), (c, 0.0)\},\$ $\tilde{B}_{r} = \{(a, 0.5), (b, 0.5), (c, 0.0)\}, \tilde{B}_{4} = \{(a, 0.5), (b, 0.0), (c, 0.5)\},\$ $\tilde{B}_{5} = \{(a, 0.0), (b, 0.5), (c, 0.5)\} \text{ and } \tilde{B}_{6} = \{(a, 0.0), (b, 0.0), (c, 0.5)\} \text{ be a}$ fuzzy sets in \tilde{A} and $\tilde{\tau} = \{\tilde{\varphi}, \tilde{A}, \tilde{B}_{1}, \tilde{B}_{2}, \tilde{B}_{3}, \tilde{B}_{4}, \tilde{B}_{5}, \tilde{B}_{6}\}$ be a fuzzy topology on \tilde{A} ,

then the FBO(\tilde{A}) = $\tilde{\tau}$ and (\tilde{A} , $\tilde{\tau}$) is a fuzzy b-extremely disconnected space .

Theorem 3.3 :

A fts (\tilde{A} , $\tilde{\tau}$) is a fuzzy b- extremely disconnected space iff for every pair of

fuzzy b-open sets \tilde{B} , \tilde{C} in $(\tilde{A}, \tilde{\tau})$ such that $\tilde{B} \ \tilde{q}^{2} \ \tilde{C}$, then $bcl(\tilde{B}) \ \tilde{q}^{2} \ bcl(\tilde{C})$.

Proof: Let \tilde{B} and $\tilde{C} \in FBO(\tilde{A})$ such that

 $\tilde{B} \ \tilde{q} \ \tilde{C}$, then by proposition 1.14 bcl(\tilde{B}) $\tilde{q} \ \tilde{C}$.

Since $(\tilde{A}, \tilde{\tau})$ is a fuzzy b- extremely disconnected space .

Then $bcl(\tilde{B}) \in FBO(\tilde{A})$.

Hence by proposition 1.14 $bcl(\tilde{B}) \ \hat{q} bcl(\tilde{C})$.

Conversely : Let $\tilde{B} \in FBO(\tilde{A})$, then \tilde{B} and bint $(\tilde{B}^c) \in FBO(\tilde{A})$

such that $\tilde{B} \ \hat{q}$ bint(\tilde{B}^c).

By hypothesis $bcl(\tilde{B}) \hat{q} bcl(bint(\tilde{B}^c))$, hence

 $bcl(\tilde{B}) \subseteq (bcl(bint(\tilde{B}^c)))^c = bint(bcl(\tilde{B})) \dots (*)$

Since $bint(bcl(\tilde{B})) \subseteq bcl(\tilde{B}) \dots (**)$

From (*), (**) we get $bint(bcl(\tilde{B})) = bcl(\tilde{B})$.

Hence $bcl(\tilde{B}) \in FBO(\tilde{A})$.

Theorem 3.4 :

A fts (\tilde{A} , $\tilde{\tau}$) is a fuzzy b-extremely disconnected space iff bint(bcl(\tilde{B})) = bcl(\tilde{B}), $\forall \tilde{B} \in FBO(\tilde{A})$.

Proof:

Let $\tilde{B} \in FBO(\tilde{A})$ and $(\tilde{A}, \tilde{\tau})$ is a fuzzy b-extremely disconnected space.

Then $bcl(\tilde{B}) \in FBO(\tilde{A})$, hence $bint(bcl(\tilde{B})) = bcl(\tilde{B})$.

Conversely : Let $\tilde{B} \in FBO(\tilde{A})$, then bint(bcl(\tilde{B})) = bcl(\tilde{B})

Hence $bcl(\tilde{B}) \in FBO(\tilde{A})$.

Therefore $(\tilde{A}, \tilde{\tau})$ is a fuzzy b-extremely disconnected space .

Corollary 3.5:

A fts (\tilde{A} , $\tilde{\tau}$) is a fuzzy b-extremely disconnected space iff bcl(bint(\tilde{B})) = bint(\tilde{B}), $\forall \tilde{B}^c \in FBO(\tilde{A})$.

Proof: Let $\tilde{B}^c \in FBO(\tilde{A})$, then $bint(bcl(\tilde{B}^c)) = bcl(\tilde{B}^c)$.

Hence $(bint(bcl(\tilde{B}^c)))^c = (bcl(\tilde{B}^c))^c$.

Therefore $bcl(bint(\tilde{B})) = bint(\tilde{B})$.

Conversely : Let $\tilde{B} \in FBO(\tilde{A})$, then \tilde{B}^c is a fuzzy b-closed set in \tilde{A} and by hypotheses we get $bcl(bint(\tilde{B}^c)) = bint(\tilde{B}^c)$ and $(bcl(bint(\tilde{B}^c)))^c = (bint(\tilde{B}^c))^c$.

Hence $bint(bcl(\tilde{B})) = bcl(\tilde{B})$.

Therefore $(\tilde{A}, \tilde{\tau})$ is a fuzzy b- extremely disconnected space .

Theorem 3.6:

Every fuzzy open subspace of fuzzy b-extremely disconnected space is

A fuzzy b-extremely disconnected space .

Proof: Let \tilde{C}_1 be a fuzzy b-open set in $(\tilde{B}, \tilde{\tau}_{\tilde{B}})$, then

there exists fuzzy b-open set \tilde{C}_2 in $(\tilde{A}, \tilde{\tau})$ such that $\tilde{B} \cap \tilde{C}_2 = \tilde{C}_1$.

Since $\tilde{B} \cap \tilde{C}_2 \in FBO(\tilde{A})$ and $(\tilde{A}, \tilde{\tau})$ is a fuzzy b-extremely disconnected space.

Then $bcl(\tilde{B} \cap \tilde{C}_2) \in FBO(\tilde{A})$.

Hence $bcl(\tilde{C}_1) \in FBO(\tilde{B})$.

Theorem 3.7 :

For any fts (\tilde{A} , $\tilde{\tau}$) the following statement are equivalent :-

- **1.** $(\tilde{A}, \tilde{\tau})$ is a fuzzy b-extremely disconnected space .
- 2. For each fuzzy b-closed set \tilde{B} , then bint(\tilde{B}) is a fuzzy b-closed set .
- **3.** For each fuzzy b-open set \tilde{B} we have $\mu_{bcl(\tilde{B})}(x) + \mu_{bcl(bint(\tilde{B}^{c}))}(x) = \mu_{\tilde{A}}(x)$.
- 4. For every pair of fuzzy b-open sets \tilde{B} , \tilde{C} with

 $\mu_{bcl(\tilde{B})}(x) + \mu_{\tilde{C}}(x) = \mu_{\tilde{A}}(x) \text{ we have } \mu_{bcl(\tilde{B})}(x) + \mu_{bcl(\tilde{C})}(x) = \mu_{\tilde{A}}(x).$

Proof: (1) \rightarrow (2) Let \tilde{B} be a fuzzy b-closed set, then \tilde{B}^c is a fuzzy b-open set.

Since $(\tilde{A}, \tilde{\tau})$ is a fuzzy b-extremely disconnected space , then $bcl(\tilde{B}^c)$ is a fuzzy b-open set , hence $(bcl(\tilde{B}^c))^c$ is a fuzzy b-closed set .

Since $(bcl(\tilde{B}^c))^c = bint(\tilde{B})$, then $bint(\tilde{B})$ is a fuzzy b-closed set.

(2) \rightarrow (3) Let \tilde{B} be a fuzzy b-open set, then \tilde{B}^c is a fuzzy b-closed set

 $\mu_{bcl(\tilde{B})}(x) + \mu_{bcl(bint(\tilde{B}^{c})}(x) = \mu_{bcl(\tilde{B})}(x) + \mu_{bint(\tilde{B}^{c})}(x) (by (2))$

 $= \mu_{bcl(\tilde{B})}(x) + \mu_{(bcl(\tilde{B}))}{}^{c}(x) = \mu_{\tilde{A}}(x).$

(3) \rightarrow (4) Let \tilde{B} , \tilde{C} be a fuzzy b-open sets such that $\mu_{bcl(\tilde{B})}(x) + \mu_{\tilde{C}}(x) = \mu_{\tilde{A}}(x)$, then $\tilde{C} = (bcl(\tilde{B}))^c = bint(\tilde{B}^c) \dots (*)$

Since $\mu_{bcl(\tilde{B})}(x) + \mu_{bcl(bint(\tilde{B}^{c}))}(x) = \mu_{\tilde{A}}(x)$, then

From (*) we get $\mu_{bcl(\tilde{B})}(x) + \mu_{bcl(\tilde{C})}(x) = \mu_{\tilde{A}}(x)$.

(4) \rightarrow (1) Let \tilde{B} be a fuzzy b-open set and let $\tilde{C} = (bcl(\tilde{B}))^c$, then

$$\begin{split} \mu_{bcl(\tilde{B})}(x) + \mu_{\tilde{C}}(x) &= \mu_{\tilde{A}}(x) \text{ and by } (4) \ \mu_{bcl(\tilde{B})}(x) + \mu_{bcl(\tilde{C})}(x) \\ &= \mu_{\tilde{A}}(x), \text{ hence} \\ bcl(\tilde{C}) &= (bcl(\tilde{B}))^c = bint(\tilde{B}^c) . \end{split}$$

Since $bcl(\tilde{C})$ is a fuzzy b-closed set , then $bint(\tilde{B}^c)$ is a fuzzy b-closed set .

Hence $bcl(\tilde{B})$ is a fuzzy b-open set .

Theorem 3.8 :

In a fuzzy b-extremely disconnected space (\tilde{A} , $\tilde{\tau}$) is a fuzzy b- \tilde{T}_2 space iff for every distinct fuzzy points $x_r, y_s \in \tilde{A}$, there exists two fuzzy b-open sets \tilde{B} , \tilde{C} in $(\tilde{A}, \tilde{\tau})$ such that $x_r \in \tilde{B}, y_s \in \tilde{C}$ and $bcl(\tilde{B}) \hat{q} bcl(\tilde{C})$.

Proof :

Let $x_r, y_s \in \tilde{A}$, then there exists two fuzzy b-open sets \tilde{B}, \tilde{C} in $(\tilde{A}, \tilde{\tau})$

such that $x_r \in \tilde{B}$, $y_s \in \tilde{C}$ and $bcl(\tilde{B}) \tilde{q} bcl(\tilde{C})$.

Since $\tilde{B} \subseteq bcl(\tilde{B})$ and $\tilde{C} \subseteq bcl(\tilde{C})$, then $\tilde{B} \ \tilde{q} \ \tilde{C}$.

Therefore $(\tilde{A}, \tilde{\tau})$ is a fuzzy b- \tilde{T}_2 space .

Conversely: Let $x_r, y_s \in \tilde{A}$, then there exists two fuzzy b-open sets \tilde{B}, \tilde{C} in $(\tilde{A}, \tilde{\tau})$ such that $x_r \in \tilde{B}, y_s \in \tilde{C}$ and $\tilde{B} \hat{q} \tilde{C}$.

Since \tilde{C} is a fuzzy b-open set, then by proposition 1.14 bcl(\tilde{B}) \tilde{q} \tilde{C} .

Since $(\tilde{A}, \tilde{\tau})$ is a fuzzy b-extremely disconnected space , then bcl (\tilde{B}) is a

fuzzy b-open set and by by proposition 1.14 we get $bcl(\tilde{B}) \ \hat{q} \ bcl(\tilde{C})$.

Theorem 3.9:

In a fuzzy b-extremely disconnected space $(\tilde{A}, \tilde{\tau})$ is fuzzy b-regular space iff for every fuzzy point $x_r \in \tilde{A}$ and for every fuzzy closed set \tilde{B} in $(\tilde{A}, \tilde{\tau})$ such that $x_r \tilde{q}^r \tilde{B}$, there exists two fuzzy b-open sets \tilde{C}_1 , \tilde{C}_2 in $(\tilde{A}, \tilde{\tau})$ such that $x_r \in \tilde{C}_1$, $\tilde{B} \subseteq \tilde{C}_2$ and bcl (\tilde{C}_1) \tilde{q}^r bcl (\tilde{C}_2) .

Proof: Let $x_r \in \tilde{A}$ and \tilde{B} be a fuzzy closed set in $(\tilde{A}, \tilde{\tau})$ such that

 $x_r \hat{q} \tilde{B}$, there exists two fuzzy b-open sets \tilde{C}_1, \tilde{C}_2 in $(\tilde{A}, \tilde{\tau})$ such that $x_r \in \tilde{C}_1$.

Since \tilde{C}_1 is a fuzzy b-open set, then by proposition 1.14 $\tilde{C}_1 \hat{q}$ bcl (\tilde{C}_2) .

Since $(\tilde{A}$, $\tilde{\tau})$ is a fuzzy b-extremely disconnected space , then $bcl(\tilde{C}_2)$ is a

fuzzy b-open set and by proposition 1.14 we get $bcl(\tilde{C}_1) \ \hat{q} \ bcl(\tilde{C}_2)$.

Conversely: Let $x_r \in \tilde{A}$ and \tilde{B} be a fuzzy closed set in $(\tilde{A}, \tilde{\tau})$

 $x_r \hat{q} \tilde{B}$, by hypotheses there exists two fuzzy b-open sets \tilde{C}_1 , \tilde{C}_2 in $(\tilde{A}, \tilde{\tau})$ such that $x_r \in \tilde{C}_1$, $\tilde{B} \subseteq \tilde{C}_2$ and bcl (\tilde{C}_1) \hat{q} bcl (\tilde{C}_2) .

Hence $\tilde{C}_1 \hat{q} \tilde{C}_2$. Therefore $(\tilde{A}, \tilde{\tau})$ is fuzzy b-regular space.

Theorem 3.10 :

If $(\tilde{A}, \tilde{\tau})$ is a fuzzy b-extremely disconnected fuzzy b-normal space, \tilde{B} is a fuzzy closed subspace in $(\tilde{A}, \tilde{\tau})$ and \tilde{C} is a fuzzy clopen subspace in \tilde{B} , then there exists fuzzy b-open set \tilde{D} in $(\tilde{A}, \tilde{\tau})$ such that $\tilde{D} \cap \tilde{B} = \tilde{C}$.

Proof: Since \tilde{C} is a fuzzy open set in \tilde{B} , then here exists a fuzzy open set \tilde{C}_1 in $(\tilde{A}, \tilde{\tau})$ such that $\tilde{C}_1 \cap \tilde{B} = \tilde{C}$.

Since \tilde{C} is a fuzzy closed set and \tilde{C}_1 is a fuzzy open set in the fuzzy b-normal space $(\tilde{A}, \tilde{\tau})$ such that $\tilde{C} \subseteq \tilde{C}_1$, therefore by theorem 2.4

there exists a fuzzy b-open set \tilde{C}_2 in $(\tilde{A}$, $\tilde{\tau})$ such that

$$\tilde{C} \subseteq \tilde{C}_2 \subseteq bcl(\tilde{C}_2) \subseteq \tilde{C}_1$$

Since $(\tilde{A}, \tilde{\tau})$ is a fuzzy b-extremely disconnected space, then $bcl(\tilde{C}_2)$ is a fuzzy b-open set and let $bcl(\tilde{C}_2) = \tilde{D}$. Thus $bcl(\tilde{C}_2) \cap \tilde{B} \subseteq \tilde{C}_1 \cap \tilde{B} = \tilde{C}$(*). Since $\tilde{C} \subseteq bcl(\tilde{C}_2)$ and $\tilde{C}_1 \subseteq \tilde{B}$, then $\tilde{C} \subseteq bcl(\tilde{C}_2) \cap \tilde{B}$(**) From (*) and (**) it follows that $\tilde{C} = \tilde{D} \cap \tilde{B}$.

4. Fuzzy b-hyper Connected Space

Definition 4.1:

A fuzzy topological space $(\tilde{A}, \tilde{\tau})$ is said to be fuzzy b-hyper connected space if $\forall \tilde{B} \in FBO(\tilde{A}) \rightarrow bcl(\tilde{B}) = \tilde{A}$.

Example 4.2:

Let $X = \{a, b, c\}$, $\tilde{A} = \{(a, 0.5), (b, 0.5), (c, 0.5)\}$,

 $\tilde{B}_{1} = \{(a, 0.5), (b, 0.0), (c, 0.0)\}, \tilde{B}_{2} = \{(a, 0.5), (b, 0.5), (c, 0.0)\},\$

 $\tilde{B}_3 = \{(a, 0.5), (b, 0.0), (c, 0.5)\}$ be a fuzzy sets in $\tilde{A}, \tilde{\tau} = \{\tilde{\varphi}, \tilde{A}, \tilde{B}_1\}$ be a fuzzy

topology on \tilde{A} , then the FBO(\tilde{A}) = { $\tilde{\varphi}$, \tilde{A} , \tilde{B}_{1} , \tilde{B}_{2} , \tilde{B}_{3} }, and (\tilde{A} , $\tilde{\tau}$) is a fuzzy b-hyper connected space.

Proposition 4.3:

Every fuzzy b-hyper connected space is a fuzzy b-extremely disconnected space.

Proof: Obvious .

Remark 4.4 :

The converse of proposition 4.3 is not true in general as shown in the following example.

Example 4.5 :

The space $(\tilde{A}, \tilde{\tau})$ in the example 3.2 is a fuzzy b-extremely disconnected space but not fuzzy b-hyper connected space.

Theorem 4.6 :

Every fuzzy open subspace of fuzzy b-hyper connected space is a fuzzy b-hyper connected space .

Proof: Let \tilde{C}_1 be a fuzzy b-open set in $(\tilde{B}, \tilde{\tau}_{\tilde{B}})$, then

there exists fuzzy b-open set \tilde{C}_2 in $(\tilde{A}, \tilde{\tau})$ such that $\tilde{B} \cap \tilde{C}_2 = \tilde{C}_1$.

Since $\tilde{B} \cap \tilde{C}_2 \in FBO(\tilde{A})$ and $(\tilde{A}, \tilde{\tau})$ is a fuzzy b-hyper connected space.

Then $bcl(\tilde{B} \cap \tilde{C}_2) = \tilde{A}$.

Since $bcl(\tilde{C}_1) = bcl(\tilde{C}_1) \cap \tilde{B} = \tilde{A} \cap \tilde{B} = \tilde{B}$.

Hence $bcl(\tilde{C}_1) = \tilde{B}$.

Lemma 4.7 :

Let $(\tilde{A}, \tilde{\tau}_1)$ and $(\tilde{A}, \tilde{\tau}_2)$ be two fuzzy topological spaces such that

 $(FBO(\tilde{A}))_1 \subseteq (FBO(\tilde{A}))_2$, then $(bcl(\tilde{B}))_2 \subseteq (bcl(\tilde{B}))_1$.

Proof:

Let $x_r \notin (bcl(\tilde{B}))_1$, then there exists fuzzy b-quasi neighborhood \tilde{C} of x_r in $(FBO(\tilde{A}))_1$ such that $\tilde{B} \tilde{q} \tilde{C}$.

Since \tilde{C} is a fuzzy b-quasi neighborhood of x_r .

Then , there exists $\tilde{D} \in (FBO(\tilde{A}))_1$ such that $x_r q \tilde{D}$ and $\tilde{D} \subseteq \tilde{C}$.

Hence $\tilde{D} \in (FBO(\tilde{A}))_2$ and \tilde{C} b-quasi neighborhood of x_r in $(FBO(\tilde{A}))_2$.

Therefore, $x_r \notin (bcl(\tilde{B}))_2$.

Proposition 4.8:

Let $(\tilde{A}, \tilde{\tau}_1)$ and $(\tilde{A}, \tilde{\tau}_2)$ be two fuzzy topological spaces such that $\tilde{\tau}_1 \subseteq \tilde{\tau}_2$ and $(FBO(\tilde{A}))_1 \subseteq (FBO(\tilde{A}))_2$, if $(\tilde{A}, \tilde{\tau}_2)$ is a fuzzy b-hyper connected space then $(\tilde{A}, \tilde{\tau}_1)$ is a fuzzy b-hyper connected space. **Proof:** Let $\tilde{B} \in (FBO(\tilde{A}))_1$, then $\tilde{B} \in (FBO(\tilde{A}))_2$.

Since $(\tilde{A}, \tilde{\tau}_2)$ is a fuzzy b-hyper connected space, then $(bcl(\tilde{B}))_2 = \tilde{A}$.

Since $(bcl(\tilde{B}))_2 \subseteq (bcl(\tilde{B}))_1$, then $\tilde{A} \subseteq (bcl(\tilde{B}))_1$ but $(bcl(\tilde{B}))_1 \subseteq \tilde{A}$.

Therefore (\tilde{A} , $\tilde{\tau}_1$) *is* a fuzzy b-hyper connected space.

Remark 4.9:

The converse of proposition 4.8 is not true in general as shown in the following example.

Example 4.10 :

Let X = {a, b, c}, $\tilde{A} = \{(a, 0.5), (b, 0.5), (c, 0.5)\},\$ $\tilde{B}_{1} = \{(a, 0.5), (b, 0.0), (c, 0.0)\}, \tilde{B}_{2} = \{(a, 0.0), (b, 0.5), (c, 0.5)\},\$ $\tilde{B}_{7} = \{(a, 0.5), (b, 0.5), (c, 0.0)\}, \tilde{B}_{4} = \{(a, 0.5), (b, 0.0), (c, 0.5)\},\$ $\tilde{B}_{5} = \{(a, 0.0), (b, 0.5), (c, 0.0)\} \text{ and } \tilde{B}_{6} = \{(a, 0.0), (b, 0.0), (c, 0.5)\} \text{ be a fuzzy sets in } \tilde{A}, \tilde{\tau}_{1} = \{\tilde{\varphi}, \tilde{A}, \tilde{B}_{1}\} \text{ and } \tilde{\tau}_{2} = \{\tilde{\varphi}, \tilde{A}, \tilde{B}_{1}, \tilde{B}_{2}\} \text{ be a fuzzy topology on}$

 \tilde{A} , then the $(FBO(\tilde{A}))_1 = \{\tilde{\varphi}, \tilde{A}, \tilde{B}_1, \tilde{B}_3, \tilde{B}_4\}$,

 $(FBO(\tilde{A}))_2 = \{\tilde{\varphi}, \tilde{A}, \tilde{B}_1, \tilde{B}_3, \tilde{B}_4, \tilde{B}_5, \tilde{B}_6\}$ and $(\tilde{A}, \tilde{\tau}_1)$ is a fuzzy b-hyper connected space but $(\tilde{A}, \tilde{\tau}_2)$ is not fuzzy b-hyper connected space.

References

[1]: Benchalli, S.S and Jenifer Karnel, "On Fuzzy b-Open Sets In Fuzzy

Topological Space", J.Computer and Mathematical Sciences No.1,

Vol.127-134, (2010).

[2] : Chakrabarty , M. K. and Ahsanullah , T. M. G. "Fuzzy Topology On Fuzzy

Sets And Tolerance Topology ", Fuzzy sets and Systems 45,103-108, (1992).

[3]: Dubois, D. and Prade H., "Fuzzy Sets and Systems; Theory and

Applications", Mathematics in Science and Engineering Vol.144, (1980).

[4]: Erdal Ekici, "Generalization of Some Fuzzy Functions",

Institute of Mathematics Academia Sinica No.3, Vol.33, (2005).

[5]: Fatteh, U. V. and Bassan, D.S., "Fuzzy Connectedness and its stronger

forms" Journal of Mathematical Analysis and Applications , III $\left(1985\right)$, 44-464 .

[6]: Kider, J. R. "Fuzzy Locally Convex-Algebras " Ph . D. Thesis, School of

Applied Sciences, Univ. Technology, (2004).

[7]: Luay, A.A. and Amed , S.A.O., "Fuzzy γ -Open Sets And Fuzzy γ -Closed Sets", American Journal of Scientific Research, 27, pp.62-67, (2011).

[8]: Mahmuod, F.S., Fath, Alla M.A and Abd.Ellah, S.M., "Fuzzy Topology On Fuzzy Sets: Fuzzy Semi Continuity And Fuzzy Separation Axioms", APPI. Math. and Comp.153, 127-140, (2004).

[9]: Rekha srivastava, S. N. L. and Arun K. srivastava "Fuzzy Hausdorff

Topological Spaces "J. Math. Anal. And Appl . 81, 497-506, (1981) . [10] : Shahla , H.K, "On Fuzzy Δ -Open Sets In Fuzzy Topological Spaces ", M.Sc Thesis ,College of Science, Salahaddin Univ, (2004) .

[11]: Wong, C. K., "Fuzzy Points and Local Properties of Fuzzy Topology", J. Math. Anal. Appl., Vol.46, pp. 316-328, (1974).

[12]: Zadeh, L.A.," Fuzzy sets", Inform. Contr. 8, 338-353, (1965).