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شبه الموجبية, مؤثر مفتاح الكلمات: الرتيب الاعظم, التطبيق الثنائي, درجة ليري شويدر, 

 لبشز 

Abstract 

    In this paper, the solvability and uniqueness ( of the solution ) of some 

classes of semilinear operators equations in infinite dimensional space 

have been considered. The linearity of the semilinear class is of maximal 

monotone operator perturbed by duality maping, and the nonlinearity are 

of Leray-Schauder type operator of quasi-positive or satisfying some 

suitable conditions. The spaces of solvability are real reflexive Banach 

space or  real Hilbert space. 

Keywords: maximal monotone, duality map, Leray-Schauder degree, 

quasi-positive, Lipschitz operator. 

1.Introduction: 

       In Mortici [4], The semilinear equation of the form Ax + F(x) = 0, is 

considered where A is a linear maximal monotone operator and the 

nonlinear operator F is of a strongly monotone Lipschitz operator. It is 

proved that, under these assumptions, the equation Ax + F(x) = 0 has a 

unique solution. 

       Where in [5],the problem Ax + F(x) = 0  , where A is a densely 

defined linear operator, and the nonlinearity F is a quasi-positive operator 

of Leray-Schauder type have been considered and the existence and 

uniqueness result under some monotonicity conditions are also obtained 

as a consequence of the properties of the Leray-Schauder degree. The 

existence and uniqueness result for the semilinear equation Au + F(u) = f 

, where A is a linear maximal monotone operator and the nonlinearity F is 

a Lipschitz operator is considered, in [8].      

     In this paper, it is presented an existence and uniqueness result for 

some classes of semilinear operator equations in infinite dimensional 

spaces, where the linearity is a maximal monotone operator perturbed by 

duality map on a real reflexive Banach space and the nonlinearity is a 

Leray-Schauder type operator for quasi-positive operator or satisfies 
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some necessary conditions. The solvability approach of this paper are 

based on Banach fixed point theorem for Leray-Schauder degree theorem 

as well as Minty-Browder theorem. Some illustrations are also presented 

with a suitable remarks and discussions . 

The following theorem, which is a semilinear perturbed  operator 

equation have been developed. 

 

2.Basics and concepts: 

2.1 Definition ,[6]: 

Let X be real Banach spaces, and let A : D(A)  X  X* be an 

linear operator where X
*
 the dual space to X, then: 

(i) A is called monotone if and only if: 

<Au Av, u  v>  0 

(ii) A is called strictly monotone if and only if: 

<Au Av, u  v> > 0 

(iii) A is called strongly monotone if there is a constant c > 0, such that: 

<Au Av, u  v>  c||u  v||
2
 

(iv) A is called coercive if and only if: 

||u||

Au,u
lim

|| u ||

    + 

2.2 Definition, [6]: 

Let A : D(A)  H  H be an linear operator on the real Hilbert 

space H, then: 

(i) A is called maximal monotone if it is monotone and Au  b if and 

only if         <b  Av, u  v>  0, for all  v  D(A) implies A has no 

proper monotone extension. 

(ii) A is called accretive if and only if (I + A) : D(A)  H is 

injective and          (I + A)
1

 is nonexpansive for all  > 0. 

(iii) A is called maximal accretive if and only if A is accretive  and (I + 

A)
1

 exists  
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      on H for all  > 0. 

2.3 Remarks : 

     Let X, Y be Banach spaces. The following properties for an operator 

A : X  Y  may be define as : 

1. A is Lipschitz continuous on M  X, if and only if ther exists a 

constant L > 0 such that: 

||Au  Av||  k||u  v||, for all u, v  M and fixed k.[1] 

2. A is k-contractive if and only if A is Lipshitz continuous with and 0  

k < 1.[1] 

3. A is nonexpansive if and only if A is Lipschitz continuous with  k  

1.[10] 

4. The operator A is called positive if and only if: 

<Au, u>  0,  u  X. [11] 

 

5-  The operator A is called quasi-positive if there exist  , such that: 

         <Au,u>  ||Au||
2
    ,  , uX.[7] 

2.4 Lemma ,[11]: 

Let A : D(A)  H  H be any linear operator on the real Hilbert 

space H. Then the following three properties of A are mutually 

equivalent: 

(i) A is monotone and R(I + A)  H. 

(ii) A is maximal accretive. 

(iii) A is maximal monotone. 

 

2.5 Theorem (The Riesz theorem ),[10] 

        Let H be a real Hilbert space and let H
*
 denote the dual space of H , 

then fH* iff  there is a vH such that 

             f(v) = < v,u >   for all uH                                                                     

(2.1) 
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Here ,the element v of H is uniquely determined by f . In addition 

            || f || = ||v||                      

2.6 Definitions (Duality Map),: 

1. L

et H be a real Hilbert space , the duality map J: H  H
*
 of H 

through  J(v) = f  where f is given by (2.1), and 

< f , u > = f(u) for all   fH
*
 and uH 

Hence < J(v) , u > = < v , u >  for all u,v  H.[10] 

2.  

Set f(u)   ||u||
2
, for all u  X, where X is a real Banach space. The 

duality map        J : X  X* of X is defined to be J  f. [11] 

 

2.7 Remark ,[11]: 

1-  

The duality map J is bijective, continuous and norm preserving, 

i.e.,         ||J(u)||  ||u||, for all u  X . 

2-  

If X is a real Hilbert space, then J is linear. 

 

2.8 Remarks (1.4.15), [11]: 

(i) Let A, B are two monotone operators, such that A : X  X* and B 

: X  X*, where X is a Banach space. Then A + B : X X* is 

monotone. 

(ii) Let A : D(A)  X  X* be maximal monotone, then the mapping 

A is not empty, i.e., there exists a (u0, *
0u )  G(A), such that u0  0 

and *
0u   0, i.e.,        (0, 0) = G(A). 

 

2.9 Lemma , [11]: 

Let b  X* be given and assume: 

(i) C is a nonempty closed convex set in the real reflexive Banach space. 

(ii) The mapping A : C  X* is maximal monotone. 
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(iii) The mapping B : C  X* is psedomonotone, bounded and 

dimicontinuous. 

Then the original problem b = Au + Bu, u  C has a solution. 

2.10 Lemma, [11]: 

Let X be a real reflexive Banach space, where X and X* are strictly 

convex, then the monotone mapping A : X  X* is maximal 

monotone if and only if    R(A + J)  X*. 

2.11 Lemma , [11]: 

Let C be a nonempty closed convex subset of the real reflexive B-space 

X, where X, X* are strictly convex. Suppose that the mapping A : C  

X* is maximal monotone. Then for all  > 0, the inverse operator (A + 

J)
1

 : X*  X is single-values, demicontinuous and maximal 

monotone. 

2.12 Lemma , [11]: 

Let X be a real reflexive Banach space, and let the dual space X* 

be a strictly convex. Set: 

f(u)   ||u||, for all u  X 

Then the duality map J : X  X* is single-valued, surjective, 

demicontinuous, maximal monotone, bounded and coercive. For all u  

X, we have:   Ju  f (u). 

2.13 Lemma ,[5]: 

     If F : H  H is a quasi-positive operator with   ,   > 1/2, then 

 

               ||x − F(x)||  ||x|| ,  x  H, x  0.    
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2.14 Lemma , (Compactness of Product), [3]: 

Let A1 : X  X be a compact linear operator and A2 : X  X 

be a bounded linear operator (hence continuous). Then A1A2 and A2A1 

are compact. 

2.15 Lemma , (Compact Perturbation), [2]: 

Let f, g, h : X  X be a mapping of Banach space X, then f is called 

compact perturbation of the mapping g if and only if f  g + h and h is 

compact. 

2.16 Definition ,[9]: 

    Let X ,Y be two topological space and let f , g : X  Y , we say that 

f is homotopic to g if there is a map  : [0, 1]X  Y such that: 

                                                 x X 

[0, 1]X={(t,x) : t[0, 1] , xX } and  

    i.e  t[0,1] let ft(x) = (x,t) then  is called homotopic between f0 

and f1. 

2.17 Lemma ,[5]: 

     Let f: U  H   H be such that I – f is compact and let y  H \  

f(U).. Then the Leray-Schauder degree d(f,U, y) satisfies the following 

properties: 

 (a) If d(f,U, y)  0, then y  f(U). 

 (b) If   C([0,1]×U,H) is such that I−H(t, ·) is compact, for all   

      t[0, 1] and y  H \  ([0, 1] × U ), then the degree 

      d(  (t, ·),U, y) = constant ,  t  [0, 1]. 

(c) The degree for the identity map I : H  H is 
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                  d(I,U, y) =   . 

 

3.Solvability of semilinear class by using degree theory 

3.1 Theorem : 

Let the operator A: X X* be a maximal monotone and 

J:XX* a duality map on the real reflexive Banach space X  such that 

X and X* are strictly convex and   

                    D(A)  int D(J)  0 ;    A(0) = 0 

 Then the sum A + J : X  X* is maximal monotone. 

Proof: 

   On using a translation, we may assume that 0  D(A)  int (J) by 

remark (2.8)(ii)  

 

and replacing u  Au with u  Au + c, for fixed c. 

     The duality map  J is maximal monotone and bounded by Lemma 

(2.12). 

The mapping A + J : X  X* is monotone, see remark (2.8)(i), and by 

Lemma (2.10), the mapping A + J is maximal monotone if and only if 

                                        R(A + 2J)  X*,                                                               

(3.1) 

 i.e., to prove that for all b*  X*, the equation 

                                       b* = Au + 2Ju, u  X                                                       

(3.2) 

 has a solution. 

Replacing u  Ju with u  Ju  b*. 

 It is sufficient to prove the equation: 
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                          0 = Au + 2Ju, u  X,                                                            

(3.3) 

has a solution. 

   To obtain a solution u of (3.1) it is sufficient to find a (u, b), such that: 

                         

1

1

b (A 2 J)u

b (J 2 J)u





  

 

    .                                                                  

(3.4) 

Where (u, b)  XX*.  

To this and set: 

Eb  (A + 2
1

J)
-1

(b) 

Fb  (J + 2
1

J)
-1

(b) 

 By the Lemma (2.11), the operator E , F : X*  X are monotone 

 and demicontinuous and we have: 

                        R(F)  D(J + 2
1

J)  D(J) 

and hence R(F) is bounded and 0  int R(F). 

To solve problem (3.2) it is sufficient to solve the equation: 

                              Eb + Fb  0, b  X*.                            (3.5)        

By Lemma (2.9), the equation (3.5) has a solution, implies the desired 

maximal monotone of A + J. 

Hence, the operator E + F : X*  X is monotone and demicontinuous 

 E + F is maximal monotone . A+J is maximal monotone . 

 

    Based on the result of theorem (3.1) and lemma (2.13), the following 

theorem is developed and it is needed in the applications . 

3.2 Theorem,: 

    Let A : D(A) H  H, linear, maximal monotone operator, and let J 

: H  H be a duality map on the real Hilbert space H and they are 
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satisfying the conditions of theorem (3.1), where F : H  H be an 

Leray-Schauder type - operator such that 

< F(x), x >  ||F(x)||
2
  ,       xH  x0 

 

for some  > 1/2. Then the equation 

                                             Ax +J(x) + F(x) = 0                                                    

(3.6) 

has at least one solution x D(A+J). 

proof: 

      By the theorem (3.1),the sum operator  (A+J) is a maximal monotone, 

and by  lemma (2.4) it is maximal accretive, hence for all  > 0 , the 

operator  ( I + (A+J)) is invertible with continuous inverse 

    ( I + (A+J))
-1

 : H  H , and by Remarks (2.3) one get              

                                             ||( I + (A+J))
-1

||  1.                                                   

(3.7) 

Now, the equation (3.6) can be written as 

                         ( I + A+ J)x + ( -I + F )x = 0  

                        ( I + A+ J)x = ( I - F )x  x = ( I + A+J)
-1

(I – F )x                        

(3.8) 

 

    Since F is an operator of Leray-Schauder dgree (see [9]), then I − F is 

compact and  

 ( I + A+J)
-1

(I – F ) 

is compact, lemma(2.14). 

    And so on, one can get 
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                                                       ( I - ( I + A+J)
-1

(I – F ))                                     

(3.9) 

 Is compact perturbation of identity map by lemma(2.15) , and hence 

                                                      ( I - ( I + A+J)
-1

(I – F )) = 0                          

(3.10)     

Can be solved using  Leray-Schauder degree as follows: 

Since  

           Ax +J(x) + F(x) = 0    (I - ( I + A+J)
-1

(I – F ) )(x) = 0                          

(3.11) 

     Let B = B(0, r) be such that  D(A+J)  

  On using  homotopy function we have that 

  (t, x) = x − ( I + A+J)
-1

(I – F )(x), x   , t  [0, 1].                                         

(3.12) 

 

  If 0  (1, B), the conclusion follows immediately. In order to use the 

invariance to homotopy of the Leray-Schauder degree (see [9]), we prove 

that 0  H([0, 1), B). 

  Let us suppose by contrary that (t, x) = 0, for some x  B  

and t  [0, 1).from equation (3.12) 

             ||x|| = t||( I + A+J)
-1

(I – F )(x)||  

                    ||( I + A+J)
-1

|| . || x – F(x)||  

   By equation (3.7) and lemma (2.13) we get           

                      ||x||    || x – F(x) ||  || x || . 

 

We must have equalities all over, in particular ( I + A+J)
-1

(I – F )(x) = 0 
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 Hence x = 0  B, contradiction. This means that 0  ([0, 1],B) and 

further, (see [9] and lemma (2.17)) 

 

               d(H(1, ·), B, 0) = d(H(0, ·), B, 0)  

 

               d( I − ( I + A+J)
-1

(I – F )(x), B, 0) = d( I, B, 0) = 1. 

 

In conclusion, d(I – ( I + A+J)
-1

(I – F )(x) , B, 0)  0  . 

 By Leray-Schauder degree, one gets: 

 The equation (I −( I + A+J)
-1

(I – F )(x)) = 0 and  equivalent, the equation                    

                                  Ax + J(x) + F(x) = 0  

has at least one solution in D(A+J) .                                                                          

 

                                                                                               

Illustrations(3.3): 

  Let   R
n
 be open set and bounded and let aij  C

1
( ), 1  i, j  n be 

real valued functions satisfying the ellipticity property 

 

             
|i|,| j| k

 aij(x)ij  0        = (1,…,n)R
n
 

 

Let us consider the following elliptic problem 
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(3.19) 

 

 The nonlinear part g(t,x) =  
1

,
n

i

i

g t x


 , where  gi(t, x) = a0i(t)x, with a0i  

C( ) ,              a0 > p > 0, under the assumption that the sum of the 

nonlinear part is quasi – positive [see lemma (3.3)], 

First , one have to prove that   

  <  
1

,
n

i

i

g t x


  , x(t) >   
*

( , ), ( , )
n

i i

i

g t x g t x         

for some 
*
= min{1, 2,…, n },  

*
 > 12.  

It should be noticed that: 

       
1

,
n

i

i

g t x


 = g1(t,x) + g2(t,x) + … +gn(t,x) 

                         = a01(t)x + a02(t)x + … + a0n(t)x 

 

                         = ( a01(t) + a02(t) + … + a0n(t)).x 

 

                         = a0(t)x 

  Such that a0(t) = 0 ( )
n

i

i

a t . 

Hence  
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 * 2

1

( , ( )) ( ) ( , ( ))
n n

i i

i i

g t x t x t dt g t x t dt
 

    

* 2 2 2

0 1 2( ). ( ) ( ) ( , ( )) ( , ( )) ... ( , ( ))na t x t x t dt g t x t dt g t x t dt g t x t dt
   

 
    

 
     

 

 2 * 2 2 2

0 1 2( ). ( ) ( , ( )) ( , ( )) ... ( , ( ))na t x t dt g t x t g t x t g t x t dt
 

 
    

 
 

                                                                                                                                                                                                                                                         

 2 * 2 2 2 2 2 2

0 01 02 0( ). ( ) ( ) ( ) ( ) ( ) ... ( ) ( )na t x t dt a t x t a t x t a t x t dt
 

 
    

 
   

  2 * 2 2 2 2

0 01 02 0( ). ( ) ( ) ( ) ... ( ) ( )na t x t dt a t a t a t x t dt
 

 
    

 
   

2 * 2 2

0 0( ). ( ) ( )a t x t dt a x t dt
 

 
  

 
   

 

2

0

*

2 2

0

( ). ( )

( ) ( )

a t x t dt

a t x t dt
 







 

 

  Is fulled with 
*
 < 1/ ||a0||. 

 

If H =L
2
() , where L

2
() is standing for the class of  then , 

         A = 
, 1

( )
n

ij

i j j j

x
a t

x x

  
     
  ,      D(A) = 2 1

0( ) ( )H H  , J = 0 

and (
n

i
i 1

F (x)


 )(t) = 
n

i

i=1

g ( t, x(t))  . The problem (3.19) can be written in the 

abstract form 

                         Ax +
n

i
i 1

F (x)


  = 0 , x  D(A)  L
2
(). 

We have that: 
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, 1

( )
n

ij

i j j j

x x
a t

x x

  
     
 x = 

           = 
, 1

.
n

ij i ij

i j j j i

x x x
a x xds a dx

x x x 

  
 

  
   

          = . .ij

j i

x x
Nx xdx a dx

x x
 

 
 

    

Since Nx = 0 on  

 

          = .ij

j i

x x
a dx

x x


 

   

            = 
, 1

n

ij

i j j

x
a

x xj

  
  

  
 x= < Ax , x > 

Where < . , . > is defined as < x , x > = 
2 ( )x t dt



  

 

            < Ax , x > = .ij

j i

x x
a dx

x x


 

   0 , 

 

     Now, on what the conditions, the sum of quasi-positive operators is 

still quasi-positive operator . the following lemma is answers this 

questions     
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Proposition(3.4): 

The following inequality hold  

                                   

n n
2 2

i i
i 1 i 1

b || F (x) || c || F (x) ||
 

                                                   

(3.20) 

if and only if c  b , < Fi(x) , Fj(x) > > 0 ,  i  j , Fi(x)  0 i I 

proof : 

n n
2 2

i i
i 1 i 1

b || F (x) || c || F (x) ||
 

   c  

n
2

i
i 1

n
2

i
i 1

b || F (x) ||

|| F (x) ||









   

n
2

i
i 1

n n

i i
i 1 i 1

b || F (x) ||

F (x), F (x)



 

 



 

 

                         

n
2

i
i 1

n n
2

i i j
i 1 i 1

b || F (x) ||

|| F (x) || 2 F (x),F (x)



 

  



 
 

 

Where  < Fi(x) , Fj(x) > > 0 , i  j , j = 1, 2, … ,n . 

 

                                                      

n
2

i
i 1
n

2
i

i 1

b || F (x) ||

|| F (x) ||









  b 

And hence one can obtained 
n n

2 2
i i

i 1 i 1

b || F (x) || c || F (x) ||
 

                                             

 
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Lemma(3.5): 

    Let Fi : H  H be a quasi-positive operators on the real Hilbert 

space H for each   

 i, i  1, 2, …, n; with real number i  , then 
n

i
i 1

F (x)


  is quasi-positive 

if                < Fi(x) , Fi(x) > > 0 , i  j and Fi(x)  0  xH  .Where 
*
= 

min{1 , 2 , … n ,},  

c  n
*
 

 

 

Proof: 

   < 
n

i
i 1

F (x)


  , x>  <F1(x), x> + <F2(x), x> + … + <Fn(x), x> 

                        1||F1(x)||
2
 + 2||F2(x)||

2
 + … + n||Fn(x)||

2
 

                        
*
||F1(x)||

2
 + 

*
||F2(x)||

2
 + … + 

*
||Fn(x)||

2
 

                        (
*
 + 

*
+ … + 

*
) 

n
2

i
i 1

|| F (x) ||


  

                                 n
* n

2
i

i 1

|| F (x) ||


   

                                 
n

2
i

i 1

c || F (x) ||


       by proposition (3.7) 

Hence    <
n

i
i 1

F (x)


 , x>  c
n

2
i

i 1

|| F (x) ||


 .                                                                

(3.21) 
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Lemma(3.6): 

       If Fi : H  H is a quasi-positive operators for all i, i  1, 2, …, n; 

with real numbers i , c and  ; where c > 1

2

  ,  *  min {1, 2, …, n}. 

Then: 

n

i 1

x F(x)


   ||x||                                                                                            

(3.22) 

Proof: 

2
n

i
i 1

x F (x)



  

n n

i i
i 1 i 1

x F (x),x F (x)
 

      

                               ||x||
2
  2<x, 

n

i
i 1

F (x)


 > + 
n

2
i

i 1

|| F (x) ||


     

                                ||x||
2
  2n*

n

i 1

||


 F(x)||
2
 + 

n
2

i
i 1

|| F (x) ||


   

                                 ||x||
2
  2c

n
2

i
i 1

|| F (x) ||


  + 
n

2
i

i 1

|| F (x) ||


  by lemma (3.13) 

                                ||x||
2
  (2c  1) 

n
2

i
i 1

|| F (x) ||


   ||x||
2
.                                             

 
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