JOURNAL OF COLLEGE OF EDUCATION
 NO. 3

Proposed a Variable Length Block
 Cipher Algorithm

Rana Saad Mohammed
Computer Science Department, Education Collage, Al-Mustansiriyah University
Baghdad, Iraq
ranasaad_m@yahoo.com

Abstract

: This paper will introduce a propose algorithm to improve an elastic block cipher algorithm by benefiting from an efficient properties of a secure cryptographic mode New Plaintext-Ciphertext Block Chaining mode (NPCBC) and by creating a good key schedule and two new S-Boxes. This paper will describe the concept of a proposed elastic block cipher that refer to stretch the supported block size into any length up to twice of the original block size. Also it defines a method for converting any existing block cipher into a new elastic block cipher. The results show that the security is increased by using the multiplication-addition operations in NPCBC mode which it provides the confusion and diffusion properties that cause difficulty of attacks on a new algorithm. And Also by using a good key schedule and two new S-Boxes which they increase the complexity with keep on speed of a new algorithm when compare it with a traditional algorithm which it has a weakness point when encrypt multiple blocks with using a fixed secret key.

Keyword: Block Cipher Design, Fixed Length Block Cipher, Variable Length Block Cipher, Elastic Block Cipher, NPCBC mode, S-boxes, key schedule.

JOURNAL OF COLLEGE OF EDUCATION NO. 3

اقتراح خوارزمية تشفير الكتلي ذات حجم متغير
 م.د. رنا سعد محمد
 الجامعة المستنصرية - كلية التربية - قسم علوم الحاسبات

Ranasaad_m@yahoo.com

(المستخلص

هذا البحث سوف يقدم خوارزمية مقترحة لتحسين خوارزمية التنفير الكتلي المطاطية بواسطة الاستفادة من خصائص الكفوءة لطريقة النتشفير الامنة (NPCBC) و كذلك بواسطة اقتزاح جدولة المفاتيح و صندوقين تعويضبن المعتمدين على المفتاح و هما متغيران في الحجم عند الادخال و -الاخراج
هذا البحث سوف يقام مفهوم تشفير الكتلي جدبد مطاطي الذي يشبر الى امتداد حجم الكتلة (SERPENT,TWOFISH,AES RC6,MARS لخوارزميات التشفير الكتلي ثابتة الحجم مثل (الى ضعف حجم الاصلي للكتلة . كذللك يعرف طريقة لتحويل اي تشفير كتلي ثابت الحجم الى
-تشفير كتلي جديد مطاطي
الننائج بينت ان الخوارزمية المقترحة حققت في زيادة امنية هيكلة الخوارزمية عند استخدام عمليتين الضرب_الجمع الموجودة في طريقة NPCBC التي نوفر خصائص التثويش و الانتشار التي تسبب صعوبة الهجوم على خوارزمية الجديدة. كذللك بواسطة استخدام جدولة المفاتيح و صندوفين تعويضين المعتمدين على المفناح و هما متغيران في الحجم عند الادخال و الاخراج التي تؤدي الى زيادة التعقيد و مع المحافظة على سرعة خوارزمية الجديدة عند مقارنتها مع خوارزمية المطاطية السابقة التي هي مهددة عندما هي تعالج مدخلات ذات اطوال متعددة تحت مفناح سري ثابت. الكلمات المفتاحية: تصميم نظام تشفير كتلي، تشفير كتلة ذات حجم ثابت، تشفير كتلة ذات حجم متغير، نظام تشفير كتلة مطاطي، طور NPCBC ، صندوق التعويض، جدولة المفاتيح.

1. Introduction

A cryptography algorithm that has a fixed size input is called a Fixed Input Length (FIL) primitive. For example, all block ciphers are common FIL primitives. A block cipher algorithm transforms a block of unencrypted text (commonly called "plaintext") into a block of encrypted text (commonly called "ciphertext") under the action of a secret key. The plaintext and ciphertext have the same length when transformed through a block cipher. Decryption process applies a reverse transformation of

JOURNAL OF COLLEGE OF EDUCATION
 NO. 3

encryption process using the same secret key. A block size is a length of the block. It is can be 64 or 128 bits [1][2].
The recent applications of internet and wireless communications need develop of cryptography algorithms that operate on Variable Input Length (VIL) primitives. A need therefore exists for techniques that provide constructions made of VIL primitives that are efficient and that provide relatively high security. These techniques are used to encode a message to create an encrypted resultant message and to decode the encrypted resultant message to recreate the original message. On encryption and its corresponding decryption technique is more efficient than a comparable conventional encryption and decryption technique, while a second encryption and its corresponding decryption technique has relatively high security. These constructions may be implemented in any number of ways, such as through hardware devices or computer systems [2][3].
In [4][5] proposed an elastic block cipher but it has a weakness point when it encrypts multiple blocks with using a fixed secret key [6]. In [7] gave a method of providing a Feistel-based variable length block cipher.
This paper proposes a new elastic block cipher algorithm with any network (substitution-permutation (SP) or Feistel) that allow us to "stretch" the supported block size up to double of the original block size with do not use plaintext padding process. And also maintaining the diffusion property of traditional encryption algorithms and change their computational load proportionally to the increase of a size.
The organization of this paper is as follows. Section 2 explains the construction of new elastic block ciphers from existing block ciphers. Section 3 presents a flowchart of algorithm. Section 4 presents a practical implementation and conclusions in the last section.

2. The construction of a New proposed elastic block cipher

A. The proposed network structure

The proposed algorithm makes the functions of the encryption and decryption of an existing block cipher process on blocks with size 2 b bits rather than size b bits of the original block cipher.
The proposed network structure uses the same cycle and round function of the original block cipher. And it makes a substitution and permutation on $b+y$ bits where $0 \leq y \leq b$.
This proposed structure involves initial and final whitening, use the cycle of the existing fixed-length block cipher, and use proposed key schedule and two S-boxes. Figure (1) shows this structure.

JOURNAL OF COLLEGE OF EDUCATION NO. 3

Fig. (1): Proposed network structure
Table (1) describes the notations and its definitions for construct this new structure:

JOURNAL OF COLLEGE OF EDUCATION

Table 1 Proposed notations and its definitions

Notation	Definition
G	Any traditional block cipher algorithm that has a fixed-length block size
r	The number of cycles in G. for example: - 1 round of SP network= 1 cycle - 2 round of Feistel network = 1 cycle - 4 round of RC6 = 1 cycle
b	The length in bits of the input block to G
y	An integer number in the range [$0, \mathrm{~b}$]
\mathbf{G}^{\prime}	An proposed elastic and modified of G with an input length (b+y) bit
\mathbf{r}^{\prime}	The number of rounds in G^{\prime}. such that - $\quad r^{\prime}=r$ in SP network - $\quad r^{\prime}=r^{*} 2$ in Feistel network
$\mathrm{I}_{\text {pre }}$	The prefix of input with b bits
$\mathrm{I}_{\text {suf }}$	The suffix of input with y bits.
$\mathrm{I}_{\text {prekey }}$	Output of XOR operation between $\mathrm{I}_{\text {pre }}$ and K_{1} in initial whitening step.
$\mathrm{I}_{\text {sufkey }}$	Output of XOR operation between $\mathrm{I}_{\text {suf }}$ and K_{2} in initial whitening step.
K_{i}	Subkeys are derived from key schedule.
C_{r},	The output from one round function of G
CE ${ }_{\text {r }}$	The output from one round function of G^{\prime}.
$\mathrm{O}_{\text {pre }}$	The prefix of CE_{r}, with b bits.
$\mathbf{O}_{\text {suf }}$	The suffix of CE_{r}, with y bits.
$\mathbf{O}_{\text {prekey }}$	Output of XOR operation between $\mathrm{O}_{\text {pre }}$ and K_{3} in final whitening step.
$0_{\text {sufkey }}$	Output of XOR operation between $\mathrm{O}_{\text {suf }}$ and K_{4} in final whitening step.
$\alpha_{\text {pre }}$	The left of C_{r}, with y bit and consider input of $\mathrm{V}(\mathrm{I}-0)$ SBox $_{2}$.
$\alpha_{\text {suf }}$	The output of V(I-0)Sbox ${ }_{1}$ with y bit.
$\beta_{\text {suf }}$	The output of S_{3} with y bit (OS_{3}).
$\boldsymbol{\beta}_{\text {pre }}$	The output of $\mathrm{V}(\mathrm{I}-0) \mathrm{Sbox}_{2}$ and also it is the left of CE_{r}, with y bit.
NPCBC[7]	Shortcut of "New Plaintext-Ciphertext Block Chaining"
V(I-0)SBox ${ }_{1}$	Shortcut of the proposed first Variable Input- Output Substitution Box with y bits size of input and output. This box is key dependent Sbox. It has two of no key dependent Sboxes S_{1} and S_{2}. The output of S_{1} is exclusive-OR (XOR) with key T_{i} and the result is the

	input of S_{2} to get output $\alpha_{\text {suf }}$ with size y bits.
S_{1}	$1^{\text {st }}$ no key dependent Sbox with size y bits of input and y bits of output.
$\mathbf{O S}_{1}$	The output of S_{1} with size y bits
RS_{1}	The result of XOR operation between OS_{1} and left bits of key T_{i}
\mathbf{S}_{2}	$2^{\text {nd }}$ no key dependent Sbox with size y bits of input and y bits of output.
OS_{2}	The output of S_{2} with size y bits
Ti	Set of keys when V(I -0)SBox ${ }_{1}$ is depended on them. These keys are derived from NPCBC mode. The number of these keys depends on r^{\prime}.
$\mathbf{V}(\mathrm{I}-0) \mathrm{SBox}_{2}$	Shortcut of the second Variable Input- Output Substitution Box with size y bits of input and y bits of output. This box is key dependent Sbox and its contain two no key dependent Sboxes S_{3} and S_{4} when the output of S_{3} is exclusiveOR (XOR) with $\alpha_{\text {suf }}$ and O_{i}, and the result is the input of S_{4}
S_{3}	$3^{\text {rd }}$ no key dependent Sbox with size y bits of input and y bits of output
OS_{3}	The output of S_{3} with size y bits
$\mathbf{R S}_{2}$	The output of XOR operation between the output of $S_{3}, \alpha_{\text {suf }}$ and left bits of key O_{i}
S_{4}	$4^{\text {th }}$ no key dependent Sbox with size y bits of input and y bits of output
OS_{4}	The output of S_{4} with size y bits
O_{i}	Set of keys when V(I-0)SBox ${ }_{2}$ is depended on them. These keys are derived from NPCBC mode. The number of these keys depends on r^{\prime}
$\mathrm{IV}_{\mathbf{i}}$	Set of initialize vectors with b bits derived from the user key. These set consider the inputs of NPCBC mode to generate T_{i} and O_{i}

The following proposed steps convert an existing block cipher (G) with a fixed size b -bit into its new version (G^{\prime}) that can process $\mathrm{b}+\mathrm{y}$ bits:

1. Set the number of rounds $\left(r^{\prime}\right)$. It is equal to (r) in a Substitution_Permutation network of exiting block cipher and equal to r*2 in a balanced Feistel network.
2. In prior to the $1^{\text {st }}$ round function of G^{\prime}, apply initial whitening step which is XOR process between the input plaintext with size $b+y\left(\mathrm{I}_{\text {pre }}, \mathrm{I}_{\text {suf }}\right)$ and the keys ($\mathrm{K}_{1}, \mathrm{~K}_{2}$) are generated from a key schedule section. The output from this step is ($\mathrm{I}_{\text {prekey }}, \mathrm{I}_{\text {sufkey }}$).
3. The output from step (2) ($\mathrm{I}_{\text {prekey }}, \mathrm{I}_{\text {sufkey }}$) is input to round function G^{\prime} with r ' round. The round function is contain on any exiting block cipher G, $V(I-0)$ Sbox $_{1}$ and $V(I-0)$ Sbox $_{2}$, see previous figure (1). $\mathrm{I}_{\text {prekey }}$ with size b bit is input to G. $\mathrm{I}_{\text {sufkey }}$ with size y bit is input to $\mathrm{V}(\mathrm{I}-0)$ Sbox $_{1}$. The leftmost of output G with size y bit ($\alpha_{\text {pre }}$) is input to $\mathrm{V}(\mathrm{I}-0)$ Sbox $_{2}$. The output from each round function is $\left(\mathrm{O}_{\text {pre }}, \mathrm{O}_{\text {suf }}\right)$ with size b+y bit.

JOURNAL OF COLLEGE OF EDUCATION
 NO. 3

4. After the last round function G^{\prime} apply final whitening step which is XOR process between the output of last round with size $b+y\left(O_{\text {pre }}, 0_{\text {suf }}\right)$ and the keys $\left(\mathrm{K}_{3}, \mathrm{~K}_{4}\right)$ are generated from a key schedule section. The output from this step is ciphertext with size $\mathrm{b}+\mathrm{y}$ ($\mathrm{O}_{\text {prekey }}, \mathrm{O}_{\text {sufkey }}$).
The round function in the proposed algorithm is used key dependent S-box which provide high security compared with elastic algorithm [1,4,5]. The proposed algorithm use swap step for OS_{3} rather than $\alpha_{\text {pre }}$ which used in elastic algorithm to increase the security against distinguish attack.

B. The proposed key schedule

The purpose of key schedule is to produce additional keys or increasing the original key length. In the implementations, a pseudorandom will be used as first part of proposed key schedule. The second part is derived from the structure of NPCBC mode to increase the randomness of the expanded key bits compared with those are produced by an existing key schedules.
The first part is used to produce a random sequence with length ($\mathrm{r}^{\prime}+4$)*b bit. This sequence consider as an input of a second part to decrease the possibility of the attacks.
The sender and receiver are agree on the key with length ($5^{*} \mathrm{~b}$) bit where a first b bit block consider as a key of G . The remain ($4 * \mathrm{~b}$) bits are divided into 4 blocks (IV1, IV2, IV3, IV4) where each with b bit and they consider as an initial vector of the second part of the key schedule of G^{\prime} to produce $\left(r^{\prime}+4\right)$ round subkeys of G^{\prime}.
For example, they are agree on a key with length 640 bit (80 byte) where first 128 bit consider as a key of G and the remain 512 bits are divided into 4 blocks (IV1, IV2, IV3, IV4) where each with 128 bit and they are consider as initial vector of the second part of key schedule G^{\prime} to produce $\left(r^{\prime}+4\right)$ round subkeys of G^{\prime}.
The first part is any strong pseudorandom which can produce sequence with length $\left(r^{\prime}+4\right) * 128$ bit and have randomness property. The sender produce this sequence as input to a second part of the proposed key schedule to produce random $\left(\mathrm{r}^{\prime}+4\right)$ subkeys and each with 128 bit. Where $\left(r^{\prime}+4\right)$ mean generate r^{\prime} subkeys by depend on number of round r^{\prime}, the number 4 mean generate 2 subkeys for initial whitening and other 2 subkeys for final whitening.
A proposed second part of key schedule is derived from the structure of NPCBC mode. NPCBC mode has a better security compared with CBC mode of block ciphers [8]. The deriving is similar to a structure of NPCBC but different in use random sequence as input (I_{i}) rather than plaintext. The output are subkeys $\left(\mathrm{O}_{\mathrm{i}}\right)$ rather than ciphertext. And also different in use function F rather than use system of block cipher E_{K} in NPCBC mode.

JOURNAL OF COLLEGE OF EDUCATION

Figure (2) shows this proposed 2nd part. Function F uses three different stages of AES $[9,10]$ structure to get permutation and substitution. The stages are Substitute Bytes Transformation, ShiftRows Transformation, and MixColumns Transformation [9]. Also in the second part will use the multiplication \bigodot_{b}-addition \boxplus_{b} operations that provide the confusion and diffusion properties.
This paper can denote the generation of subkeys by the following equations where suppose $b=128$ bit and the output of a first part is consider as input to a second part which is divided into blocks I_{1}, I_{2}, \ldots each with b bits.

```
\(\mathbf{2}^{\text {nd }}\) part of a proposed key schedule:
\(T_{i}=\left(I V_{1} \bigodot_{128} I V_{2}\right) \boxplus_{128}\left(I V_{3} \bigodot_{128}\left(I V_{4} \boxplus_{128}\left(I V_{1} \bigodot_{128} I V_{2}\right)\right)\right)\)
\(O_{i-1}=F\left(\left(\left(I V_{1} \bigodot_{128} I V_{2}\right) \boxplus_{128} I V_{4}\right) \bigodot_{128} I V_{3}\right)\)
\(O_{i}=F\left(\left(\left(I V_{2} \bigodot_{128} I_{i}\right) \boxplus_{128} O_{i-1}\right) \bigodot_{128} T_{i}\right)\)
Where:
- \(\mathrm{i}=1\) to \(\left(\mathrm{r}^{\prime}+4\right)\)
- \(T_{i}\) is key dependent of \(V(I-O) S B o x_{1}\)
- \(O_{i}\) is key dependent of \(V(I-O)\) SBox \(_{2}\)
- \(\odot_{128}\) denotes \(x \bigodot_{128} y=\left(x_{1} \bigodot_{128} y_{1}, x_{2} \bigodot_{n} y_{2}, \ldots, x_{128} \bigodot_{128} y_{128}\right) \in G F(2)^{128}\),
    where
    \(x_{b} \bigodot_{128} y_{b}=1 \bmod \left(2^{128}+1\right), \quad x_{b}\) and \(y_{b}=(0,0, \ldots, 0)\),
    \(x_{b} \cdot y_{b} \bmod \left(2^{128}+1\right), \quad x_{b}\) and \(y_{b} \neq(0,0, \ldots, 0)\),
    \(x_{b}=(0,0, \ldots, 0)\), and \(y_{b} \neq(0,0, \ldots, 0)\),
    \(x_{b} \neq(0,0, \ldots, 0)\), and \(y_{b}=\quad(0,0, \ldots, 0)\),
- \(\boxplus_{128}\) means \(\quad x \boxplus_{128} y \quad=\left(x_{1} \boxplus_{128} y_{1}, x_{2} \boxplus_{128} y_{2}, \quad \ldots . \quad ., x_{128} \boxplus_{128} y_{128}\right) \in\)
    \(G F(2)^{128}\), where \(x_{b} \boxplus_{128} y_{b}=\left(x_{b}+y_{b}\right) \bmod 2^{128}\).
```

The sender uses these subkeys in order with i from 1 to $r^{\prime}+4$ while the receiver uses these subkeys in reverse order with i from r'+4 down to 1 .

JOURNAL OF COLLEGE OF EDUCATION NO. 3

Fig. (2): $2^{\text {nd }}$ part of a proposed key schedule

C. The proposed two S -boxes

1. $V(I-O)$ SBox $_{1}$

This Sbox is depend on key T_{i} so it is called key dependent Sbox and has non linear property. See figure (1) which show the work of this Sbox when the $I_{\text {sufkey }}$ with y bit is input of $\mathrm{V}(\mathrm{I}-0)$ Sbox $_{1}$ which go to S_{1} which its contain on table of bits. $I_{\text {sufkey }}$ and its number of y bits are index of this table to out new bits with size y bit called $O S_{1}$. Then exclusive-OR (XOR) process is performed between the output of $S_{1}\left(O S_{1}\right)$ and left bits of key T_{i} with size y bit. Then the result, called $R S_{1}$, is the input of S_{2} which it contains on table of bits and the input with its number of y bits are index of this table to out new bits with size y bit called $O S_{2}$. Then the $\alpha_{s u f}$ takes the bits of $O S_{2}$ as output of $\mathrm{V}(\mathrm{I}-0)$ Sbox $_{1}$.

$1.1 \mathrm{~S}_{1}$

This sbox can be written as a table with set of random elements is shown in table (2) and arranged by depending on number of bits (y) for $I_{\text {sufkey }} . \mathrm{S}_{1}$ has value and y bit for input $I_{\text {sufkey }}$ as they index of table and output new value with y bit called $O S_{1}$. See the following procedure that shows the work of S_{1}.

Procedure S_{1} ($I_{\text {sufkey }}$ as input, OS_{1} as output)

$R_{1}=y \bmod 8$, where y is number of bits for $I_{\text {sufkey }}$
Case R_{1} of
$\mathrm{R}_{2[\mathrm{~s}]}=\mathrm{I}_{\text {sufkey }} / 8$, divide the input into sets of 8 bit and each set is saved in array called $\mathrm{R}_{2[\mathrm{~s}]}$, where
[s] is number of set.
$R_{3[s]}=S_{1}\left(R_{2[s]}, 8\right), R_{2[s]}$ consider as input to S_{1} when the value of $R_{2[s]}$ in hex and the number of y which equal to 8 as they index of table (1). The output is new sets of 8 bit and each set is saved in array calledR ${ }_{3[s]}$, where [s] is number of set.
$\mathrm{R}_{3 \text { mer }}=\mathrm{R}_{3 \text { mer }} \& \mathrm{R}_{3[\mathrm{~s}]}$, merge the sets of array which each with 8 bit into one set with y bit.
$\mathrm{OS}_{1}=\mathrm{R}_{3 \mathrm{mer}}$
1 or 2 or 3 or 4 or 5 or 6 or 7 : if $(y<8)$ then
begin
$\mathrm{R}_{4}=\operatorname{left}\left(\mathrm{I}_{\text {sufkey }}, \mathrm{R}_{1}\right)$,cut R_{1} bits value from left of input
$R_{5}=S_{1}\left(R_{4}, R_{1}\right)$, where R_{1} is equal to 1 or 2 or 3 or 4 or 5 or 6 or 7 .
$\mathrm{OS}_{1}=\mathrm{R}_{5}$
end
else
if $(y>8)$ then
begin
$\mathrm{R}_{4}=\operatorname{left}\left(\mathrm{I}_{\text {sufkey }}, \mathrm{R}_{1}\right)$,cut R_{1} bits value from left of input
$R_{5}=S_{1}\left(R_{4}, R_{1}\right)$, where R_{1} is equal to 1 or 2 or 3 or 4 or 5 or 6 or 7 .
$\mathrm{R}_{6}=\operatorname{right}\left(\mathrm{I}_{\text {sufkey }}, \mathrm{y}-\mathrm{R}_{1}\right)$
$\mathrm{I}_{\text {sufkey } 2}=\mathrm{R}_{6}$
$\mathrm{R}_{7[\mathrm{~s}]}=\mathrm{I}_{\text {sufkey } 2} / 8$, divide $\mathrm{I}_{\text {sufkey2 }}$ into sets of 8 bit and each set is saved in array calledR $\mathrm{R}_{7 \mathrm{~s}]}$, , where $[\mathrm{s}]$ is number of set.

$$
\begin{aligned}
& \mathrm{R}_{8[\mathrm{~s}]}=\mathrm{S}_{1}\left(\mathrm{R}_{7[\mathrm{~s}]}, 8\right) \\
& \mathrm{R}_{8 \mathrm{mer}}=\mathrm{R}_{8 \mathrm{mer}} \& \mathrm{R}_{8[\mathrm{~s}]}, \text { merge the sets of array which each with } 8 \text { bit into one set with } y
\end{aligned}
$$ bit.

$$
\begin{aligned}
& \mathrm{R}_{9}=\mathrm{R}_{5} \& \mathrm{R}_{8 \mathrm{mer}} . \\
& \mathrm{OS}_{1}=\mathrm{R}_{9}
\end{aligned}
$$

end
end of case

JOURNAL OF COLLEGE OF EDUCATION
 NO. 3

Table 2 proposed S1

y	
1	01
2	0312
3	15304267
4	0EB345D896AF17C2
5	1C 9 C 3 1D 16131981 A 520 E 10 1F 11126 B 15141718 D 1 A 1 B 741 EF
6	712343751839 B 9 A 12 C 3C E 31011 1D 131423161729462 D 36 1A 3F 1F 3A 22 2F 1524 302627 1E 21 2A 2B 2C 1B 2E F 253132332835030 3E 20 1C 3B D 3D 819
7	4515866355 3C 54486367 B 16624749504 A 1213015 7F 4418 19 1A 3D 1C 43 1E 1F 2021 5B 40 6F 2571273229 2A 28 2C F 5A 2F 3042 C 5370383637 3B 39 3A 31617 3E 4133 3F 684 2B 7346 2D 74 E 26 4B 4C 4D 4E 4F 5E 5152572 55 6A 6D 759 2E 23 5C 5D 76 5F 6061 6B 964 D 2469 1D A 563 6C 22 6E 7E 348 1B 141175107778 65 7A 7B 7C 7D 7972
8	0 A4 6B 319 C4 D2 78 CB A B C DE FF3 131211 A6 D7 33171844 C0 1B 1C 23 8F $1 F 2021$ 8D 7F E0 25 CF 89 7B 52 2D 5E 2F EA E7 353063 2C 16 AD 553 F 32639 9A 3B 8A 9C 7C 2E B3 CC CA AE 4 D0 E4 47 4B 71 4A 2B 4C 8B 4E 9B 6651295354 E8 609658 F1 FC 82 5C 7586 5F D6 F2 6240646556 CE 9F F8 6A 87 6C 3D 41425749727374 5D 76 C7 FB 795928 2A 377 E 27 EE A5 FE 83 5A 8561 B9 E1 15 3C 4D 8C 36 8E 1E 70 B8 9293 A2 C1 8499899 3A 7A 6D 54568 A0 AB 94 A3 1 BE 90 A7 A8 1A AA 46 AC CD 95 FF B0 B1 B2 3122 B5 BF DF 912 BA BB E2 BD 69 DC A9 43 C2 C3 38 C5 C6 77 A1 C9 6F 67 FD 973426 9E D1 14 D3 F7 D5 50 F0 D8 80 DA DB BC DD 1D B7 DE 88 9D E3 48 E5 E6 B4 7D E9 ED EB EC 3E D9 EF 6E 4F AF 1078 F5 F6 D4 81 F9 FA F4 B6 24 5B C8

$1.2 S_{2}$

This sbox can be written as a table with set of random elements is shown in table (3) and arranged by depending on number of bits for $R S_{1} . \mathrm{S}_{2}$ has value and y bit for input $R S_{1}$ as they index of table and output new value with y bit called $O S_{2}$. See the following procedure that shows the work of S_{2}.

```
Procedure S}\mp@subsup{\boldsymbol{S}}{\mathbf{2}}{(\boldsymbol{RS}}\mp@subsup{\boldsymbol{1}}{\mathbf{1}}{\mathrm{ as input,}}\boldsymbol{O\mp@subsup{S}{2}{}}\mathrm{ as output)
R10}=\textrm{y}\operatorname{mod}8,\mathrm{ where y is number of bits for }R\mp@subsup{S}{1}{
Case R10 of
0: R}\mp@subsup{R}{11[s]}{}=R\mp@subsup{S}{1}{}/8\mathrm{ ,divide the input into sets of 8 bit and each set is saved in array called
    R
    R12[s]}=\mp@subsup{S}{2}{}(\mp@subsup{R}{11[s]}{,},8),\mp@subsup{R}{11[s]}{}\mathrm{ consider as input to }\mp@subsup{S}{2}{}\mathrm{ when the value of }\mp@subsup{R}{11[s]}{}\mathrm{ in hex and the
number of y which equal to 8 as they index of table (2). The output is new sets of 8 bit and each
set is saved in array called }\mp@subsup{R}{12[s]}{}\mathrm{ , where [s] is number of set.
    R12mer }=\mp@subsup{R}{12\mathrm{ mer }}{&}\mp@subsup{R}{12[s]}{}\mathrm{ , merge the sets of array which each with }8\mathrm{ bit into one set with y
bit.
    OS =R12mer
1 or 2 or 3 or 4 or 5 or 6 or 7: if (y<8) then
    begin
        R13}=\operatorname{left}(R\mp@subsup{S}{1}{},\mp@subsup{R}{10}{})\mathrm{ ,cut }\mp@subsup{R}{10}{}\mathrm{ bits value from left of input
        R14}=\mp@subsup{S}{2}{}(\mp@subsup{R}{13}{},\mp@subsup{R}{10}{})\mathrm{ ,where R}\mp@subsup{R}{10}{}\mathrm{ is equal to }1\mathrm{ or 2 or 3 or 4 or 5 or 6 or 7.
        OS =R14
    end
```


JOURNAL OF COLLEGE OF EDUCATION

```
else
if ( }\textrm{y}>8\mathrm{ ) then
    begin
        R13}=\operatorname{left}(R\mp@subsup{S}{1}{},\mp@subsup{R}{1}{})\mathrm{ ,cut }\mp@subsup{R}{10}{}\mathrm{ bits value from left of input
        R14}=\mp@subsup{S}{1}{}(\mp@subsup{R}{13}{},\mp@subsup{R}{10}{})\mathrm{ ,where }\mp@subsup{R}{10}{}\mathrm{ is equal to }1\mathrm{ or }2\mathrm{ or }3\mathrm{ or 4 or 5 or 6 or 7.
    R15}=\operatorname{right}(R\mp@subsup{S}{1}{},\textrm{y}-\mp@subsup{R}{10}{}
    RS 12 = R 15
    R16[s]}=R\mp@subsup{S}{12}{}/8\mathrm{ , divide }R\mp@subsup{S}{12}{}\mathrm{ into sets of 8 bit and each set is saved in array called }\mp@subsup{R}{16[s]}{}\mathrm{ ,
        ,where [s] is number of set.
    R
    R17mer }=\mp@subsup{R}{17mer}{*}&\mp@subsup{R}{17[s]}{}\mathrm{ , merge the sets of array which each with 8 bit into one set with y
bit.
    R18}=\mp@subsup{R}{14}{&}&\mp@subsup{R}{17mer}{}
    OS =R18
    end
end of case
```

Table 3 proposed S2

y	
1	01
2	1320
3	40136527
4	D 42065 A 189 F 3 CBE 7
5	1B 1F 18719 1C 4 B 149216 E 0121011 F 138151617 A C 1AD 5 1D 1E 3
6	0113234562589 A 3C C 2 12 1A 30 1D 27133638 2D 3E 1F E 2F 1B 1C 14241839 35 2E 23 B F 3A 728 29 D 2C 2B 161 2A 263119 1E 34212237152010 3B 33 3D 17 3F
7	241 1B 3 1F B 6721 6B 642 C 7D 23 F 721141 4B 141561 3F 18434940 6D 69 1E 5A 2B A 2D E 53 2E 26 272829 7B 5D 2C 2225 4C 42 31 4D 3A 7F 351937133933 3B 5 7C 3E 3D 674662 2A 6F 451247 6E 1A 5B 87 A 32 4E 4F 3051 D 05474715758595673 5C 20 5E 5F 6075481738656679684 4A 9 6C 1C 1D 3670 6A 10507644557778 3C 2F 166352 7E 34
8	03073 B5 4 D 678 5C AB B 6D 5 DF D9 1011 D8 13 E5 15 A 17231988 1B 1C 1D 4727 A4 217618 BA 25 32 1F 2D 3C 2A 3A 2C D4 2E F0 8D AD 9F 33 4A 353637293962 9A 8C 3D 3E 3F 5241 6A 7B 444546 DA C4 49 B1 4B 4C AC 57 4F 50384059 E4 557131 F5 53 5A 22 E7 74 7D 7C 8F 61 E C1 64 D7 776368 FD B3 54 6C 6B 6E C0 E0 56722 5D C6 69 ED 7851 1A 95 5F 5E 7E 7F A1 81 A8 8320856 F 87 EB 89 CF 96 E8 EE 8E 9B 9091929394 FC 2897 DC 2F 67 4D 9C A3 9E 3 D6 80 A2 9D 60 B0 E3 A7 82 A9 F6 16 D2 C2 AE 43 C5 3B B2 42 F9 F3 B6 B7 EF B9 86 BB BC A6 BE BF 246598 C3 48 A5 DB C7 C8 C9 84 CB 70 FE F7 8A D0 D1 BD E2 CA D5 A0 2614 7A 1275 4E 58 DE B8 99 E1 D3 8B C 1E E6 2B CC E9 EA F EC 661 CE 3479 F2 AA F4 DD 9 F1 F8 B4 FA FB AF 5B CD FF

JOURNAL OF COLLEGE OF EDUCATION
 NO. 3
 2017

2. $V(I-O)$ SBox $_{2}$

This Sbox is depend on key O_{i} and also on $\alpha_{\text {suf }}$ so it is called key dependent Sbox and has non linear property. See figure (1) which show the work of this Sbox when the left of C_{r}, with y bit called $\alpha_{\text {pre }}$ is input of $V(I-0)$ Sbox $_{2}$ which go to S_{3} which its contain on table of bits. $\alpha_{\text {pre }}$ and its number of y bits are index of this table to out new bits with size y bit called OS_{3}. Then exclusive-OR (XOR) process is performed with the output of $\mathrm{S}_{3}\left(\mathrm{OS}_{3}\right)$, left bits of key O_{i} and the output of $\mathrm{V}(\mathrm{I}-$ $0)$ Sbox $_{1}\left(\alpha_{\text {suf }}\right)$. Then the result, called RS_{2}, is the input of S_{4} which it contains on table of bits and the input with its number of y bits are index of this table to out new bits with size y bit called OS_{4}. Then the $\beta_{\text {pre }}$ takes the bits of OS_{4} as output of $\mathrm{V}(\mathrm{I}-0)$ Sbox $_{2}$.

$2.1 S_{3}$

This sbox can be written as a table with set of random elements is shown in table (4) and arranged by depending on number of bits (y) for $\alpha_{\text {pre }} . S_{3}$ has value and y bit for input $\alpha_{\text {pre }}$ as they index of table and output new value with y bit called OS_{3}. See the following procedure that shows the work of S_{3}.

```
Procedure \(\mathbf{S}_{\mathbf{3}}\) ( \(\boldsymbol{\alpha}_{\text {pre }}\) as input, \(\mathbf{O S}_{\mathbf{3}}\) as output)
\(\mathrm{R}_{19}=\mathrm{y} \bmod 8\), where y is number of bits for \(\alpha_{\text {pre }}\)
Case \(\mathrm{R}_{19}\) of
\(0: \mathrm{R}_{20[\mathrm{~s}]}=\alpha_{\text {pre }} / 8\),divide the input into sets of 8 bit and each set is saved in array called
    \(\mathrm{R}_{20[\mathrm{~s}]}\), where [s] is number of set.
    \(R_{21[s]}=S_{3}\left(R_{20[s]}, 8\right), R_{20[s]}\) consider as input to \(S_{3}\) when the value of \(R_{20[s]}\) in hex and the
    number of \(y\) which equal to 8 as they index of table (3). The output is new sets of 8 bit and
    each set is saved in array called \(\mathrm{R}_{21[\mathrm{~s}]}\), where [ s\(]\) is number of set.
    \(R_{21 \text { mer }}=R_{21 \text { mer }} \& R_{21[s]}\), merge the sets of array which each with 8 bit into one set with \(y\)
bit.
    \(\mathrm{OS}_{3}=\mathrm{R}_{21 \text { mer }}\)
1 or 2 or 3 or 4 or 5 or 6 or 7 : if \((y<8)\) then
    begin
            \(R_{22}=\operatorname{left}\left(\alpha_{\text {pre }}, R_{19}\right)\),cut \(R_{19}\) bits value from left of input
            \(R_{23}=S_{3}\left(R_{22}, R_{19}\right)\), where \(R_{19}\) is equal to 1 or 2 or 3 or 4 or 5 or 6 or 7 .
    \(\mathrm{OS}_{3}=\mathrm{R}_{23}\)
    end
    else
if \((y>8)\) then
    begin
        \(\mathrm{R}_{22}=\operatorname{left}\left(\alpha_{\mathrm{pre}}, \mathrm{R}_{19}\right)\),cut \(\mathrm{R}_{19}\) bits value from left of input
        \(R_{23}=S_{3}\left(R_{22}, R_{19}\right)\),where \(R_{19}\) is equal to 1 or 2 or 3 or 4 or 5 or 6 or 7 .
        \(\mathrm{R}_{24}=\operatorname{right}\left(\alpha_{\text {pre }}, \mathrm{y}-\mathrm{R}_{19}\right)\)
        \(\alpha_{\text {pre2 }}=\mathrm{R}_{6}\)
        \(\mathrm{R}_{25[\mathrm{~s}]}=\alpha_{\text {pre2 }} / 8\), divide \(\alpha_{\text {pre2 }}\) into sets of 8 bit and each set is saved in array calledR \({ }_{25[\mathrm{~s}]}\),
        ,where [s] is number of set.
```


JOURNAL OF COLLEGE OF EDUCATION

```
    \(\mathrm{R}_{26[\mathrm{~s}]}=\mathrm{S}_{3}\left(\mathrm{R}_{25[\mathrm{~s}]}, 8\right)\)
    \(R_{26 \text { mer }}=R_{26 \text { mer }} \& R_{26[s]}\), merge the sets of array which each with 8 bit into one set with \(y\)
bit.
    \(\mathrm{R}_{27}=\mathrm{R}_{23} \& \mathrm{R}_{26 \text { mer }}\).
    \(\mathrm{OS}_{3}=\mathrm{R}_{27}\)
    end
end of case
```

Table 4 proposed S3

Y	
1	10
2	0321
3	04675123
4	0 C 85 F 21739 EB 4 DA 6
5	41231011149 A 7 E B C D 813120 1F 156 F 1618519 1A 1C 1B 1D 1E 17
6	3A 3F 30 2D 450 1E 3C 616 B C D 23 F 10119 E 36157261819 1A 1B 1C 1D 31 1F 2082239 3E 25 3B 272829 2A 2B 2C 17 2E 2F 2211333343353714381224 3D 132 A
7	062 FD 755567893 B C 39 E 3C 5E 1121314 3F 161718 5C 1A 42 1C 1D 1E 1F 557322 5D 6F 106227 4A 3354 2B 2C 2D 2E 230602829353419152447 F 3B 6778 3E 7D 4041 7B 48 4C 45 7A A 3A 77 69 4B 3D 61704 F 502352 59 2A 3732575853 5A 20367611463171266364 5F 66 1B 68 5B 6A 6B 3851 6E 6C 49 7E 72217444 6D 2547965 43 7C 4E 4D 7F
8	3C E2 443 BB 1 A 28 E8 951 8C 3F C0 FC 50 A2 70951217 C3 B7 861932475855 1D E0 8B DB D2 2223 CD 5626275 4D 1118 D6 2D 2E 2F 3024 2B 3382 9D CA 7E 38 FF 80 3B 14 3D 3E C DD BA 421324546 CE 48 AA 4A 8D 4C 29 F5 4F 2C 6 F3 53 FD 1C A3 57 E6 D4 EE 7D 5F F7 B B4 AC EF 99606465 E5 67 9B 69 BE 59 5E 6D 6E 6F 2A 98547361 A9 767775 7C 87 B 79 6B 37 7F 3A 81 F A7 84850 B1 9089 B2 10 8E 4B 6C F6 6A 9192 F2 94 D3 969771 62 9A 68 9C 49 9E 9F A0 D7 1F 66 AE A5 DE 83 A8 78 ED AB C5 AD FE AF B0 7 BD 35 8F B5 DF F8 B8 B9 414 E 8A F0 BF D C1 5D 39 C4 63 B3 C7 D5 C9 5A CB CC F4 52 CF D0 D1 21 BC 5B C6 34 A1 87 D9 DA 20 DC 40 A6 93 1E E1 D8 E3 5C 72 1B E7 7A E9 EA EB EC C8 3674 B6 F1 31 88 1A 4E E4 C2 16 F9 FA FB 4325 A4 15

$2.2 S_{4}$

This sbox can be written as a table with set of random elements is shown in table (5) and arranged by depending on number of bits for $\mathrm{RS}_{2} . \mathrm{S}_{4}$ has value and y bit for input RS_{2} as they index of table and output new value with y bit called OS_{4}. See the following procedure that shows the work of S_{4}.

Procedure $\mathbf{S}_{\mathbf{4}}$ ($\mathbf{R S}_{\mathbf{2}}$ as input, $\mathbf{O S}_{\mathbf{4}}$ as output)

$\mathrm{R}_{28}=\mathrm{y} \bmod 8$, where y is number of bits for RS_{2}
Case R_{28} of
$0: \mathrm{R}_{29[\mathrm{~s}]}=\mathrm{RS}_{2} / 8$, divide the input into sets of 8 bit and each set is saved in array called $\mathrm{R}_{29[\mathrm{~s}]}$, where [s] is number of set.
$\mathrm{R}_{30[s]}=\mathrm{S}_{4}\left(\mathrm{R}_{29[s]}, 8\right), \mathrm{R}_{29[s]}$ consider as input to S_{4} when the value of $\mathrm{R}_{29[s]}$ in hex and the number of y which equal to 8 as they index of table (4). The output is new sets of 8 bit and each set is saved in array called $\mathrm{R}_{30[\mathrm{~s}]}$, where [s] is number of set.

JOURNAL OF COLLEGE OF EDUCATION

```
    R R30mer }=\mp@subsup{R}{30\mathrm{ mer }}{}&\mp@subsup{R}{30[s]}{}\mathrm{ , merge the sets of array which each with 8 bit into one set with y
bit.
    OS
1 or 2 or 3 or 4 or 5 or 6 or 7: if (y<8) then
    begin
    R
    R R2 = S ( }\mp@subsup{R}{31}{},\mp@subsup{R}{28}{})\mathrm{ ,where R R28 is equal to 1 or 2 or 3 or 4 or 5 or 6 or 7.
        OS
    end
else
    if (y>8) then
    begin
        R
```



```
        R
    RS 22}=\mp@subsup{R}{33}{
    R
        ,where [s] is number of set.
    R
        R 
bit.
    R
        OS
    end
end of case
```

Table 5 proposed S4

Y	
1	10
2	2103
3	56204317
4	382495671 FAB 0 DEC
5	C 11 A 3611 E 789 A 1 D 2 B 4 F 1017 1B 13161501 E 1819512 D 14 1C 1F
6	072 F 3724 3A 31 1E 169 A 3 E D 25 F 101121351532261819 1A 1B 201411 1F 1C 2122238 291727 C 3628 2B 26 2E 2C 3039 B 334 35 2D 1D 3834 2A 3B 3C 3D 3E 3F
7	5A 1 6D 7F 46867209 A 60 CDE 2375 5F 32 1A 281816175019 13 1B 2955 5D 628 3F 2258 2B 2C 2F 1E 3972 3A 2414 B 5430 3B 2E 1233 4D 70363738 7D 2A 53 3C 3D 074 4B 794243 40454611 1F 4927 F 4C 3461 4F 155152273 1D 5657 3E 59 25 5B 21 77 5E 47 2D 7B 6A 6364 6566 5C 676948 6B 6C 44 6E 6F 3571 1C 31541 76 4A 78 4E 7A 107 C 267 E 3
8	061234 1A 67 DD FE A 2B C 48 E F 10 6D 12138315 B1 B7 8E 195 1B 1C A0 9D 1F AE 5833 2324 6A 26 D 36499 DE AF 2C 2D 2E 9B DB 3173 B4 51 A3 3637 4B 39 3A 3B 9E 3D 8C 32 C1 CC D9 D7 44454647 7B 49 4A 2596 CE 9F C9 50 B5 52535455 DC 2F 16 77 5A 5B 5C 3E C5 5F 30 F4 626328 D5 65 D4 68 BA CA D BB 80 6E 6F 70 F6 3587427 EE C8 4118 DF F8 F9 7D FB 7F CF 5D 8276848685878889 8A 8B 9 F2 1 7C 569192 AA 94 F5 5E 2298 8D 9A B3 9C 976640 FF A1 A2 C4 A4 A5 95 A7 A8 A9 42 AB C3 AD B6 E5 B0 C0 B2 4338 A6 2017 FC D1 CB 6C 1E BD BE BF CD 75 C2 34 EF AC C6 C7 71 4F 3F 697821 1D 11 D0 B9 D2 816729 D6 E2 D8 93 DA B8 90 3C 2A 7A E0 E1 B E3 577214 E7 E8 E9 EA EB EC ED 4C E6 F0 F1 BC F3 79 6B 59 F7 4E 8F FA 7E FD 60 E4 4D

JOURNAL OF COLLEGE OF EDUCATION
 NO. 3
 2017

A. The general flowchart of proposed algorithm

In this section will introduce a general flowchart in figure (3) to describe the work of proposed algorithm.

Fig. (3): A general flowchart of a proposed algorithm

B. The practical implementation of proposed algorithm

At first to generate two new variable input-output key dependent SBoxes by generate four fixed SBox $S_{1}, S_{2}, S_{3}, S_{4}$ where they have random and no iteration positions in case $(2 \leq y \leq 8)$. Then insert these Sbox to a proposed algorithm which has a proposed key schedule. The result shows that an algorithm has a good structure, it has a high linearity complexity (6 n) rather than (1 n) where n is number of operations in one round, it has an increase in the speed, and it is more random compared with a previous elastic block cipher algorithm as shown in the following tables (5) and (6) of randomness and NIST tests respectively when the proposed algorithm has smaller values in the most results.

JOURNAL OF COLLEGE OF EDUCATION
 NO. 3
 2017

Table 5 The randomness tests

The tests	frequency	serial	Poker	autocorrelation	Run
Elastic algorithm [4]	0.40	1.60	2.05	0.25	21.69
Proposed elastic algorithm	0.98	$\mathbf{1 . 1 5}$	3.67	$\mathbf{- 1 . 2 5}$	$\mathbf{1 1 . 4 4}$

Table 6 NIST statistical tests

No.	NIST test	Elastic algorithm $[4]$	Proposed elastic algorithm
$\mathbf{1}$	Frequency	0.5022	0.8025
$\mathbf{2}$	Block frequency M=128	0.8818	0.9997
$\mathbf{3}$	Runs	0.4775	$\mathbf{0 . 0 1 6 9}$
$\mathbf{4}$	Longest Runs of Ones	0.3247	$\mathbf{0 . 0 4 3 7}$
$\mathbf{5}$	Rank	0.3576	$\mathbf{0 . 1 9 5 9}$
$\mathbf{6}$	FFT	0.2629	0.3018
$\mathbf{7}$	NonOverlapping Templates $\mathbf{~ m = 9}$	0.5260	$\mathbf{0 . 4 8 7 2}$
$\mathbf{8}$	Overlapping Templates all ones B='1111111111'	0.0423	$\mathbf{0 . 0 3 5 1}$
$\mathbf{9}$	Universal statistical L=6 \& Q=1000	0.7864	$\mathbf{0 . 6 5 3 2}$
$\mathbf{1 0}$	Linear complexity $\mathbf{M = 5 0 0}$	0.1842	0.4087
$\mathbf{1 1}$	Serial m=12	0.3310	$\mathbf{0 . 0 6 5 6}$
$\mathbf{1 2}$	Approximate Entropy $\mathbf{m = 8}$	0.5001	0.6851
$\mathbf{1 3}$	Cumulative Sums (Forward)	0.1365	$\mathbf{0 . 0 7 1 5}$

C. The conclusions

This paper proposes a new elastic block cipher algorithm with any network (substitution-permutation (SP) or Feistel) compared with the existing method that provides a Feistel-based variable length block cipher only.
A proposed algorithm allows us to "stretch" the supported block size up to double of the original block size with do not use plaintext padding process. This new structure has a good construction because it uses two proposed S-Boxes which depend on keys inside a one cycle rather than use XOR operation as in an existing elastic structure.
A number of round r^{\prime} in the new elastic algorithm is decreased into (r) in a Substitution Permutation (SP) network of exiting block cipher. And it equal to ($\mathrm{r} * 2$) in a balanced Feistel network rather than ($\mathrm{r}+[\mathrm{ry} / \mathrm{b}]$) in existing elastic algorithm that cause to increase the speed of algorithm.
The complexity of a proposed round function of G^{\prime} is increased to (6 n), where n is the number of operations in one round, with preserve on the speed at the same time because the round function of G^{\prime} use faster operations which consist of lookup in the table of S-Box and XOR operation. While in round function of G , the complexity is (1n) because it is use one operation (XOR operation). So the security of a new elastic

JOURNAL OF COLLEGE OF EDUCATION
 NO. 3

structure and the randomness are increased when (y) value is increased forward to (b) bit while the existing elastic structure is vulnerable and has less security.
The existing elastic network has a weakness point when encrypt multiple blocks with using a fixed secret key that mean it has not well designed of key schedule. The new elastic network has good structure and good key schedule to prevent this weakness point in elastic network. A proposed key schedule has strong properties that derived from NPCBC mode.

References

[1]Cook, D., Yung, M., \& Keromytis, A. (2004), " Elastic Block Ciphers",Columbia University.
[2]Patel, S., Ramazan, Z., \& Sundaram, G. (2007)," Constructions of variable input length cryptographic primitives for high efficiency and high security", Patent Appliaction publication, pun. No. US20030191950.
[3] Bellare, M., Rogaway, P. (1999)," On the Construction of Variable Input length ciphers", In: Knudsen L. (eds) Fast Software Encryption. FSE 1999. Lecture Notes in Computer Science, vol 1636. Springer, Berlin, Heidelberg.
[4]Cook, D., Yung, M., \& Keromytis, A. (2007),"Elastic Block ciphers:the basic design", ASIACCS '07: Proceedings of the 2nd ACM symposium on Information, computer and communications security.
[5]Cook, D., Yung, M., \& Keromytis, A. (2004)," Elastic Block ciphers: The feistel cipher case", Columbia University.
[6] Zhang, L., Wu, W., Zhang, L., Li, Y. (2009), "A note on Cook's elastic block cipher", Conference: Proceedings of the 2009 ACM Symposium on Information, Computer and Communications Security, ASIACCS 2009, Sydney, Australia, March 10-12.
[7]Lee, J., Koo, B., Roh, D., Kim, W. \& Kwon, D. (2016),"Appartus and method for providing feistel based variable length block cipher". Patent Appliaction publication, pun. No. Us 2016/0056954 A1.
[8]Gu Dawu and Wang Yi, "On the Techniques of Enhancing the Security of Block Ciphers". ACM SIGOPS Operating Systems Review 35(4):94-96 - October 2001.
[9] Stallings, W. (2005)," Cryptography and Network Security Principles and Practices, Fourth Edition", Prentice Hall.
[10] Daemen, J., \& Rijmen, V. (1999) "AES Proposal: Rijndael",Available:http://citeseerx.ist.psu.edu/viewdoc/summary?doi= 10.1.1.36.

