
JOURNAL OF COLLEGE OF EDUCATION
NO.3………..….………..…….…2017

93

Proposed a Variable Length Block

 Cipher Algorithm

Rana Saad Mohammed

Computer Science Department, Education Collage, Al-Mustansiriyah

University

Baghdad, Iraq
ranasaad_m@yahoo.com

Abstract:

 This paper will introduce a propose algorithm to improve an elastic block

cipher algorithm by benefiting from an efficient properties of a secure

cryptographic mode New Plaintext-Ciphertext Block Chaining mode

(NPCBC) and by creating a good key schedule and two new S-Boxes. This

paper will describe the concept of a proposed elastic block cipher that refer

to stretch the supported block size into any length up to twice of the

original block size. Also it defines a method for converting any existing

block cipher into a new elastic block cipher. The results show that the

security is increased by using the multiplication-addition operations in

NPCBC mode which it provides the confusion and diffusion properties that

cause difficulty of attacks on a new algorithm. And Also by using a good

key schedule and two new S-Boxes which they increase the complexity

with keep on speed of a new algorithm when compare it with a traditional

algorithm which it has a weakness point when encrypt multiple blocks with

using a fixed secret key.

Keyword: Block Cipher Design, Fixed Length Block Cipher, Variable

Length Block Cipher, Elastic Block Cipher, NPCBC mode, S-boxes, key

schedule.

JOURNAL OF COLLEGE OF EDUCATION
NO.3………..….………..…….…2017

94

 اقتراح خوارزمية تشفير الكتلي ذات حجم متغير
 م.د. رنا سعد محمد

 قسم علوم الحاسبات –كلية التربية –الجامعة المستنصرية
Ranasaad_m@yahoo.com

 مستخلصال
هذا البحث سوف يقدم خوارزمية مقترحة لتحسين خوارزمية التشفير الكتلي المطاطية بواسطة

اقتراح جدولة و كذلك بواسطة (NPCBC) وءة لطريقة التشفير الامنةالاستفادة من خصائص الكف
صندوقين تعويضين المعتمدين على المفتاح و هما متغيران في الحجم عند الادخال و المفاتيح و

 .الاخراج
هذا البحث سوف يقدم مفهوم تشفير الكتلي جديد مطاطي الذي يشير الى امتداد حجم الكتلة

 SERPENT,TWOFISH,AES RC6,MARS) ر الكتلي ثابتة الحجم مثللخوارزميات التشفي
الى ضعف حجم الاصلي للكتلة . كذلك يعرف طريقة لتحويل اي تشفير كتلي ثابت الحجم الى (

 .تشفير كتلي جديد مطاطي
النتائج بينت ان الخوارزمية المقترحة حققت في زيادة امنية هيكلة الخوارزمية عند استخدام عمليتين

التي توفر خصائص التشويش و الانتشار التي NPCBCضرب_الجمع الموجودة في طريقة ال
تسبب صعوبة الهجوم على خوارزمية الجديدة. كذلك بواسطة استخدام جدولة المفاتيح و صندوقين
تعويضين المعتمدين على المفتاح و هما متغيران في الحجم عند الادخال و الاخراج التي تؤدي

لتعقيد و مع المحافظة على سرعة خوارزمية الجديدة عند مقارنتها مع خوارزمية الى زيادة ا
المطاطية السابقة التي هي مهددة عندما هي تعالج مدخلات ذات اطوال متعددة تحت مفتاح سري

 ثابت.
تصميم نظام تشفير كتليي تشيفير كتلية ذات حجيم ثابيت تشيفير كتلية ذات حجيم : الكلمات المفتاحية

 صندوق التعويض جدولة المفاتيح. NPCBCنظام تشفير كتلة مطاطي طور متغير

1. Introduction

 A cryptography algorithm that has a fixed size input is called a Fixed

Input Length (FIL) primitive. For example, all block ciphers are common

FIL primitives. A block cipher algorithm transforms a block of unencrypted

text (commonly called “plaintext”) into a block of encrypted text

(commonly called “ciphertext”) under the action of a secret key. The

plaintext and ciphertext have the same length when transformed through a

block cipher. Decryption process applies a reverse transformation of

JOURNAL OF COLLEGE OF EDUCATION
NO.3………..….………..…….…2017

95

encryption process using the same secret key. A block size is a length of

the block. It is can be 64 or 128 bits [1][2].

The recent applications of internet and wireless communications need

develop of cryptography algorithms that operate on Variable Input Length

(VIL) primitives. A need therefore exists for techniques that provide

constructions made of VIL primitives that are efficient and that provide

relatively high security. These techniques are used to encode a message to

create an encrypted resultant message and to decode the encrypted resultant

message to recreate the original message. On encryption and its

corresponding decryption technique is more efficient than a comparable

conventional encryption and decryption technique, while a second

encryption and its corresponding decryption technique has relatively high

security. These constructions may be implemented in any number of ways,

such as through hardware devices or computer systems [2][3].

In [4][5] proposed an elastic block cipher but it has a weakness point when

it encrypts multiple blocks with using a fixed secret key [6]. In [7] gave a

method of providing a Feistel-based variable length block cipher.

This paper proposes a new elastic block cipher algorithm with any network

(substitution-permutation (SP) or Feistel) that allow us to “stretch” the

supported block size up to double of the original block size with do not use

plaintext padding process. And also maintaining the diffusion property of

traditional encryption algorithms and change their computational load

proportionally to the increase of a size.

The organization of this paper is as follows. Section 2 explains the

construction of new elastic block ciphers from existing block ciphers.

Section 3 presents a flowchart of algorithm. Section 4 presents a practical

implementation and conclusions in the last section.

2. The construction of a New proposed elastic block cipher

A. The proposed network structure

The proposed algorithm makes the functions of the encryption and

decryption of an existing block cipher process on blocks with size 2b bits

rather than size b bits of the original block cipher.

The proposed network structure uses the same cycle and round function of

the original block cipher. And it makes a substitution and permutation on

b+y bits where 0 ≤ y ≤ b.

This proposed structure involves initial and final whitening, use the cycle

of the existing fixed-length block cipher, and use proposed key schedule

and two S-boxes. Figure (1) shows this structure.

JOURNAL OF COLLEGE OF EDUCATION
NO.3………..….………..…….…2017

96

Fig. (1): Proposed network structure

Table (1) describes the notations and its definitions for construct this new

structure:

JOURNAL OF COLLEGE OF EDUCATION
NO.3………..….………..…….…2017

97

Table 1 Proposed notations and its definitions
Notation Definition

G Any traditional block cipher algorithm that has a fixed-length block size

r The number of cycles in G. for example:

- 1 round of SP network= 1 cycle
- 2 round of Feistel network = 1 cycle

- 4 round of RC6 = 1 cycle

b The length in bits of the input block to G

y An integer number in the range [0, b]

G′ An proposed elastic and modified of G with an input length (b+y) bit

r′ The number of rounds in G′. such that

- r′ = r in SP network
- r′ = r*2 in Feistel network

𝐈𝐩𝐫𝐞 The prefix of input with b bits

𝐈𝐬𝐮𝐟 The suffix of input with y bits.

𝐈𝐩𝐫𝐞𝐤𝐞𝐲 Output of XOR operation between Ipre and K1 in initial whitening step.

𝐈𝐬𝐮𝐟𝐤𝐞𝐲 Output of XOR operation between Isuf and K2 in initial whitening step.

𝐊𝐢 Subkeys are derived from key schedule.

𝐂𝐫′ The output from one round function of G

𝐂𝐄𝐫′ The output from one round function of G′.

𝐎𝐩𝐫𝐞 The prefix of CEr′with b bits.

𝐎𝐬𝐮𝐟 The suffix of CEr′ with y bits.

𝐎𝐩𝐫𝐞𝐤𝐞𝐲 A. Output of XOR operation between Opreand K3 in final whitening step.

𝐎𝐬𝐮𝐟𝐤𝐞𝐲 B. Output of XOR operation between Osuf and K4 in final whitening step.

𝛂𝐩𝐫𝐞 C. The left of Cr′ with y bit and consider input of V(I − O)SBox2.

𝛂𝐬𝐮𝐟 D. The output of V(I − O)Sbox1 with y bit.

𝛃𝐬𝐮𝐟 E. The output of S3 with y bit (OS3).

𝛃𝐩𝐫𝐞 F. The output of V(I − O)Sbox2 and also it is the left of CEr′ with y bit.

NPCBC[7] Shortcut of “New Plaintext-Ciphertext Block Chaining”

𝐕(𝐈 − 𝐎)𝐒𝐁𝐨𝐱𝟏 G. Shortcut of the proposed first Variable Input- Output Substitution Box with y
bits size of input and output.

H. This box is key dependent Sbox. It has two of no key dependent Sboxes S1 and

 S2. The output of S1 is exclusive-OR (XOR) with key Ti and the result is the

JOURNAL OF COLLEGE OF EDUCATION
NO.3………..….………..…….…2017

98

input of S2 to get output αsuf with size y bits.

 𝐒𝟏 I. 1
st
 no key dependent Sbox with size y bits of input and y bits of output.

 𝐎𝐒𝟏 J. The output of S1 with size y bits

 𝐑𝐒𝟏 K. The result of XOR operation between OS1 and left bits of key Ti

 𝐒𝟐 2
nd

 no key dependent Sbox with size y bits of input and y bits of output.

 𝐎𝐒𝟐 L. The output of S2 with size y bits

𝐓𝐢 M. Set of keys when V(I − O)SBox1 is depended on them. These keys are derived

from NPCBC mode. The number of these keys depends on r′.

𝐕(𝐈 − 𝐎)𝐒𝐁𝐨𝐱𝟐 N. Shortcut of the second Variable Input- Output Substitution Box with size y bits
of input and y bits of output. This box is key dependent Sbox and its contain

two no key dependent Sboxes S3 and S4 when the output of S3 is exclusive-

OR (XOR) with αsuf and Oi, and the result is the input of S4

 𝐒𝟑 O. 3
rd

 no key dependent Sbox with size y bits of input and y bits of output

 𝐎𝐒𝟑 P. The output of S3 with size y bits

 𝐑𝐒𝟐 The output of XOR operation between the output of S3, αsuf and left bits of

key Oi

 𝐒𝟒 Q. 4
th
 no key dependent Sbox with size y bits of input and y bits of output

 𝐎𝐒𝟒 R. The output of S4 with size y bits

 𝐎𝐢 S. Set of keys when V(I − O)SBox2 is depended on them. These keys are derived
from NPCBC mode. The number of these keys depends on r′

 𝐈𝐕𝐢 T. Set of initialize vectors with b bits derived from the user key. These set consider

the inputs of NPCBC mode to generate Ti and Oi

The following proposed steps convert an existing block cipher (G) with a

fixed size b-bit into its new version (G′) that can process b + y bits:

1. Set the number of rounds (r′). It is equal to (r) in a

Substitution_Permutation network of exiting block cipher and equal to r*2

in a balanced Feistel network.

2. In prior to the 1
st
 round function of G′, apply initial whitening step which is

XOR process between the input plaintext with size b+y (Ipre, Isuf) and the

keys (K1, K2) are generated from a key schedule section. The output from

this step is (Iprekey, Isufkey).

3. The output from step (2) (Iprekey, Isufkey) is input to round function G′ with

r’ round. The round function is contain on any exiting block cipher

G, V(I − O)Sbox1 and V(I − O)Sbox2, see previous figure (1).

Iprekeywith size b bit is input to G. Isufkey with size y bit is input to

V(I − O)Sbox1. The leftmost of output G with size y bit (αpre) is input to

V(I − O)Sbox2. The output from each round function is (Opre, Osuf) with

size b+y bit.

JOURNAL OF COLLEGE OF EDUCATION
NO.3………..….………..…….…2017

99

4. After the last round function G′ apply final whitening step which is XOR

process between the output of last round with size b+y (Opre, Osuf) and the

keys (K3, K4) are generated from a key schedule section. The output from

this step is ciphertext with size b+y (Oprekey, Osufkey).

The round function in the proposed algorithm is used key dependent S-box

which provide high security compared with elastic algorithm [1,4,5]. The

proposed algorithm use swap step for OS3 rather than αprewhich used in

elastic algorithm to increase the security against distinguish attack.

B. The proposed key schedule

The purpose of key schedule is to produce additional keys or increasing

the original key length. In the implementations, a pseudorandom will be

used as first part of proposed key schedule. The second part is derived from

the structure of NPCBC mode to increase the randomness of the expanded

key bits compared with those are produced by an existing key schedules.

The first part is used to produce a random sequence with length (r′+4)*b

bit. This sequence consider as an input of a second part to decrease the

possibility of the attacks.

The sender and receiver are agree on the key with length (5*b) bit where

a first b bit block consider as a key of G. The remain (4*b) bits are divided

into 4 blocks (IV1, IV2, IV3, IV4) where each with b bit and they consider

as an initial vector of the second part of the key schedule of G′ to produce

(r′+4) round subkeys of G′.

 For example, they are agree on a key with length 640 bit (80 byte) where

first 128 bit consider as a key of G and the remain 512 bits are divided into

4 blocks (IV1, IV2, IV3, IV4) where each with 128 bit and they are

consider as initial vector of the second part of key schedule G′ to produce

(r′+4) round subkeys of G′.

The first part is any strong pseudorandom which can produce sequence

with length (r′+4)*128 bit and have randomness property. The sender

produce this sequence as input to a second part of the proposed key

schedule to produce random (r′+4) subkeys and each with 128 bit. Where

(r′+4) mean generate r′ subkeys by depend on number of round r′, the

number 4 mean generate 2 subkeys for initial whitening and other 2

subkeys for final whitening.

A proposed second part of key schedule is derived from the structure of

NPCBC mode. NPCBC mode has a better security compared with CBC

mode of block ciphers [8]. The deriving is similar to a structure of NPCBC

but different in use random sequence as input (Ii) rather than plaintext. The

output are subkeys (Oi) rather than ciphertext. And also different in use

function F rather than use system of block cipher EK in NPCBC mode.

JOURNAL OF COLLEGE OF EDUCATION
NO.3………..….………..…….…2017

100

Figure (2) shows this proposed 2nd part. Function F uses three different

stages of AES [9,10] structure to get permutation and substitution. The

stages are Substitute Bytes Transformation, ShiftRows Transformation, and

MixColumns Transformation [9]. Also in the second part will use the

multiplication ⊙b –addition ⊞b operations that provide the confusion and

diffusion properties.

This paper can denote the generation of subkeys by the following

equations where suppose b=128 bit and the output of a first part is consider

as input to a second part which is divided into blocks I1, I2,… each with b

bits.

2
nd

 part of a proposed key schedule:

 𝑇𝑖=(𝐼𝑉1 ⊙128 𝐼𝑉2) ⊞128(𝐼𝑉3 ⊙128 (𝐼𝑉4 ⊞128(𝐼𝑉1 ⊙128 𝐼𝑉2)))

𝑂𝑖−1=F(((𝐼𝑉1 ⊙128 𝐼𝑉2) ⊞128 𝐼𝑉4) ⊙128 𝐼𝑉3)

𝑂𝑖=F(((𝐼𝑉2 ⊙128 𝐼𝑖) ⊞128 𝑂𝑖−1) ⊙128 𝑇𝑖)

Where:

 i= 1 to (r’+4)

 𝑇𝑖 is key dependent of 𝑉(𝐼 − 𝑂)𝑆𝐵𝑜𝑥1

 𝑂𝑖 is key dependent of 𝑉(𝐼 − 𝑂)𝑆𝐵𝑜𝑥2

 ⊙128 denotes 𝑥 ⊙128 𝑦 =(𝑥1 ⊙128 𝑦1, 𝑥2 ⊙𝑛 𝑦2,. . ., 𝑥128 ⊙128 𝑦128)∈ 𝐺𝐹(2)128,

where

𝑥𝑏 ⊙128 𝑦𝑏= 1 mod (2128 + 1), 𝑥𝑏 𝑎𝑛𝑑 𝑦𝑏=(0,0,. . . ,0),

 𝑥𝑏 . 𝑦𝑏mod (2128 + 1), 𝑥𝑏 𝑎𝑛𝑑 𝑦𝑏≠ (0,0,. . . ,0),

 𝑥𝑏 =(0,0,. . . ,0), 𝑎𝑛𝑑 𝑦𝑏≠ (0,0,. . . ,0),

 𝑥𝑏 ≠ (0,0,. . . ,0), 𝑎𝑛𝑑 𝑦𝑏= (0,0,. . . ,0),

 ⊞128 means 𝑥 ⊞128 𝑦 =(𝑥1 ⊞128 𝑦1, 𝑥2 ⊞128 𝑦2,, 𝑥128 ⊞128 𝑦128)∈
𝐺𝐹(2)128,where 𝑥𝑏 ⊞128 𝑦𝑏=(𝑥𝑏 + 𝑦𝑏)mod 2128 .

The sender uses these subkeys in order with i from 1 to r′+4 while the receiver uses

these subkeys in reverse order with i from r′+4 down to 1.

JOURNAL OF COLLEGE OF EDUCATION
NO.3………..….………..…….…2017

101

Fig. (2): 2
nd

part of a proposed key schedule

C. The proposed two S-boxes

1. 𝑽(𝑰 − 𝑶)𝑺𝑩𝒐𝒙𝟏
This Sbox is depend on key 𝑇𝑖 so it is called key dependent Sbox and has

non linear property. See figure (1) which show the work of this Sbox when

the 𝐼𝑠𝑢𝑓𝑘𝑒𝑦 with y bit is input of V(I − O)Sbox1 which go to 𝑆1 which its

contain on table of bits. 𝐼𝑠𝑢𝑓𝑘𝑒𝑦 and its number of y bits are index of this

table to out new bits with size y bit called 𝑂𝑆1. Then exclusive-OR (XOR)

process is performed between the output of 𝑆1(𝑂𝑆1) and left bits of key 𝑇𝑖

with size y bit. Then the result, called 𝑅𝑆1, is the input of 𝑆2 which it

contains on table of bits and the input with its number of y bits are index of

this table to out new bits with size y bit called 𝑂𝑆2. Then the α𝑠𝑢𝑓takes the

bits of 𝑂𝑆2 as output of V(I − O)Sbox1.

1.1 𝐒𝟏

This sbox can be written as a table with set of random elements is shown in

table (2) and arranged by depending on number of bits (y) for 𝐼𝑠𝑢𝑓𝑘𝑒𝑦. S1

has value and y bit for input 𝐼𝑠𝑢𝑓𝑘𝑒𝑦 as they index of table and output new

value with y bit called 𝑂𝑆1. See the following procedure that shows the

work of S1.

JOURNAL OF COLLEGE OF EDUCATION
NO.3………..….………..…….…2017

102

Procedure 𝐒𝟏 (𝐈𝐬𝐮𝐟𝐤𝐞𝐲 as input, 𝐎𝐒𝟏 as output)

R1=y mod 8, where y is number of bits for Isufkey

Case R1 of

0 : R2[s]=Isufkey/8 ,divide the input into sets of 8 bit and each set is saved in array called R2[s],where

[s] is number of set.

 R3[s]= S1(R2[s],8), R2[s] consider as input to S1 when the value of R2[s] in hex and the number

of y which equal to 8 as they index of table (1). The output is new sets of 8 bit and each set is

saved in array calledR3[s], where [s] is number of set.

 R3mer=R3mer&R3[s], merge the sets of array which each with 8 bit into one set with y bit.

 OS1=R3mer

1 or 2 or 3 or 4 or 5 or 6 or 7: if (y<8) then

begin

 R4=left(Isufkey, R1),cut R1bits value from left of input

 R5= S1(R4, R1), where R1is equal to 1 or 2 or 3 or 4 or 5 or 6 or 7.

 OS1=R5

 end

 else

 if (y>8) then

 begin

 R4=left(Isufkey, R1),cut R1bits value from left of input

 R5= S1(R4, R1),where R1is equal to 1 or 2 or 3 or 4 or 5 or 6 or 7.

 R6=right(Isufkey,y- R1)

 Isufkey2=R6

 R7[s]=Isufkey2/8 , divide Isufkey2 into sets of 8 bit and each set is saved in array calledR7[s],

,where [s] is number of set.

 R8[s]= S1(R7[s],8)

 R8mer=R8mer&R8[s], merge the sets of array which each with 8 bit into one set with y

bit.

 R9= R5& R8mer.

 OS1=R9

 end

end of case

JOURNAL OF COLLEGE OF EDUCATION
NO.3………..….………..…….…2017

103

Table 2 proposed S1

y

1 0 1

2 0 3 1 2

3 1 5 3 0 4 2 6 7

4 0 E B 3 4 5 D 8 9 6 A F 1 7 C 2

5 1C 9 C 3 1D 16 13 19 8 1 A 5 2 0 E 10 1F 11 12 6 B 15 14 17 18 D 1A 1B 7 4 1E F

6 7 1 2 34 37 5 18 39 B 9 A 12 C 3C E 3 10 11 1D 13 14 23 16 17 29 4 6 2D 36 1A 3F 1F 3A 22 2F 15 24
30 26 27 1E 21 2A 2B 2C 1B 2E F 25 31 32 33 28 35 38 0 3E 20 1C 3B D 3D 8 19

7 45 1 58 66 35 5 3C 54 48 63 67 B 16 62 47 49 50 4A 12 13 0 15 7F 44 18 19 1A 3D 1C 43 1E 1F 20 21
5B 40 6F 25 71 27 32 29 2A 28 2C F 5A 2F 30 42 C 53 70 38 36 37 3B 39 3A 31 6 17 3E 41 33 3F 68 4
2B 73 46 2D 74 E 26 4B 4C 4D 4E 4F 5E 51 52 57 2 55 6A 6D 7 59 2E 23 5C 5D 76 5F 60 61 6B 9 64
D 24 69 1D A 56 3 6C 22 6E 7E 34 8 1B 14 11 75 10 77 78 65 7A 7B 7C 7D 79 72

8 0 A4 6B 3 19 C4 D2 7 8 CB A B C D E F F3 13 12 11 A6 D7 33 17 18 44 C0 1B 1C 23 8F 1F 20 21 8D

7F E0 25 CF 89 7B 52 2D 5E 2F EA E7 35 30 63 2C 16 AD 55 3F 32 6 39 9A 3B 8A 9C 7C 2E B3 CC
CA AE 4 D0 E4 47 4B 71 4A 2B 4C 8B 4E 9B 66 51 29 53 54 E8 60 96 58 F1 FC 82 5C 75 86 5F D6
F2 62 40 64 65 56 CE 9F F8 6A 87 6C 3D 41 42 57 49 72 73 74 5D 76 C7 FB 79 59 28 2A 37 7E 27 EE
A5 FE 83 5A 85 61 B9 E1 15 3C 4D 8C 36 8E 1E 70 B8 92 93 A2 C1 84 9 98 99 3A 7A 6D 5 45 68 A0
AB 94 A3 1 BE 90 A7 A8 1A AA 46 AC CD 95 FF B0 B1 B2 31 22 B5 BF DF 91 2 BA BB E2 BD 69
DC A9 43 C2 C3 38 C5 C6 77 A1 C9 6F 67 FD 97 34 26 9E D1 14 D3 F7 D5 50 F0 D8 80 DA DB BC
DD 1D B7 DE 88 9D E3 48 E5 E6 B4 7D E9 ED EB EC 3E D9 EF 6E 4F AF 10 78 F5 F6 D4 81 F9 FA
F4 B6 24 5B C8

1.2 𝐒𝟐

This sbox can be written as a table with set of random elements is shown in

table (3) and arranged by depending on number of bits for 𝑅𝑆1 . S2 has

value and y bit for input 𝑅𝑆1 as they index of table and output new value with

y bit called 𝑂𝑆2. See the following procedure that shows the work of S2.

Procedure 𝑺𝟐 (𝑹𝑺𝟏 as input, 𝑶𝑺𝟐 as output)

𝑅10=y mod 8, where y is number of bits for 𝑅𝑆1

Case 𝑅10 of

0 : 𝑅11[𝑠]=𝑅𝑆1/8 ,divide the input into sets of 8 bit and each set is saved in array called

𝑅11[𝑠],where [s] is number of set.

 𝑅12[𝑠]= 𝑆2(𝑅11[𝑠],8), 𝑅11[𝑠] consider as input to 𝑆2 when the value of 𝑅11[𝑠] in hex and the

number of y which equal to 8 as they index of table (2). The output is new sets of 8 bit and each

set is saved in array called𝑅12[𝑠], where [s] is number of set.

 𝑅12𝑚𝑒𝑟=𝑅12𝑚𝑒𝑟&𝑅12[𝑠], merge the sets of array which each with 8 bit into one set with y

bit.

 𝑂𝑆2=𝑅12𝑚𝑒𝑟

 1 or 2 or 3 or 4 or 5 or 6 or 7: if (y<8) then

 begin

 𝑅13=left(𝑅𝑆1, 𝑅10),cut 𝑅10bits value from left of input

 𝑅14= 𝑆2(𝑅13, 𝑅10),where 𝑅10is equal to 1 or 2 or 3 or 4 or 5 or 6 or 7.

 𝑂𝑆2=𝑅14

 end

JOURNAL OF COLLEGE OF EDUCATION
NO.3………..….………..…….…2017

104

 else

if (y>8) then
 begin

 𝑅13=left(𝑅𝑆1, 𝑅1),cut 𝑅10bits value from left of input

 𝑅14= 𝑆1(𝑅13, 𝑅10),where 𝑅10is equal to 1 or 2 or 3 or 4 or 5 or 6 or 7.

 𝑅15=right(𝑅𝑆1,y- 𝑅10)

 𝑅𝑆12=𝑅15

 𝑅16[𝑠]=𝑅𝑆12/8 , divide 𝑅𝑆12 into sets of 8 bit and each set is saved in array called 𝑅16[𝑠],

,where [s] is number of set.

 𝑅17[𝑠]= 𝑆2(𝑅16[𝑠],8)

 𝑅17𝑚𝑒𝑟=𝑅17𝑚𝑒𝑟&𝑅17[𝑠], merge the sets of array which each with 8 bit into one set with y

bit.

 𝑅18= 𝑅14& 𝑅17𝑚𝑒𝑟 .

 𝑂𝑆2=𝑅18

 end

end of case

Table 3 proposed S2

y

1 0 1

2 1 3 2 0

3 4 0 1 3 6 5 2 7

4 D 4 2 0 6 5 A 1 8 9 F 3 C B E 7

5 1B 1F 18 7 19 1C 4 B 14 9 2 1 6 E 0 12 10 11 F 13 8 15 16 17 A C 1A D 5 1D 1E 3

6 0 11 32 3 4 5 6 25 8 9 A 3C C 2 12 1A 30 1D 27 13 36 38 2D 3E 1F E 2F 1B 1C 14 24 18 39 35 2E 23 B F 3A 7 28
29 D 2C 2B 16 1 2A 26 31 19 1E 34 21 22 37 15 20 10 3B 33 3D 17 3F

7 24 1 1B 3 1F B 6 7 21 6B 64 2 C 7D 23 F 72 11 41 4B 14 15 61 3F 18 43 49 40 6D 69 1E 5A 2B A 2D E 53 2E 26
27 28 29 7B 5D 2C 22 25 4C 42 31 4D 3A 7F 35 19 37 13 39 33 3B 5 7C 3E 3D 67 46 62 2A 6F 45 12 47 6E 1A 5B
8 7A 32 4E 4F 30 51 D 0 54 74 71 57 58 59 56 73 5C 20 5E 5F 60 75 48 17 38 65 66 79 68 4 4A 9 6C 1C 1D 36 70
6A 10 50 76 44 55 77 78 3C 2F 16 63 52 7E 34

8 0 30 73 B5 4 D 6 7 8 5C AB B 6D 5 DF D9 10 11 D8 13 E5 15 A 17 23 19 88 1B 1C 1D 47 27 A4 21 76 18 BA 25
32 1F 2D 3C 2A 3A 2C D4 2E F0 8D AD 9F 33 4A 35 36 37 29 39 62 9A 8C 3D 3E 3F 52 41 6A 7B 44 45 46 DA
C4 49 B1 4B 4C AC 57 4F 50 38 40 59 E4 55 71 31 F5 53 5A 22 E7 74 7D 7C 8F 61 E C1 64 D7 77 63 68 FD B3
54 6C 6B 6E C0 E0 56 72 2 5D C6 69 ED 78 51 1A 95 5F 5E 7E 7F A1 81 A8 83 20 85 6F 87 EB 89 CF 96 E8 EE
8E 9B 90 91 92 93 94 FC 28 97 DC 2F 67 4D 9C A3 9E 3 D6 80 A2 9D 60 B0 E3 A7 82 A9 F6 16 D2 C2 AE 43 C5
3B B2 42 F9 F3 B6 B7 EF B9 86 BB BC A6 BE BF 24 65 98 C3 48 A5 DB C7 C8 C9 84 CB 70 FE F7 8A D0 D1

BD E2 CA D5 A0 26 14 7A 12 75 4E 58 DE B8 99 E1 D3 8B C 1E E6 2B CC E9 EA F EC 66 1 CE 34 79 F2 AA
F4 DD 9 F1 F8 B4 FA FB AF 5B CD FF

JOURNAL OF COLLEGE OF EDUCATION
NO.3………..….………..…….…2017

105

2. 𝑽(𝑰 − 𝑶)𝑺𝑩𝒐𝒙𝟐
This Sbox is depend on key Oi and also on αsuf so it is called key

dependent Sbox and has non linear property. See figure (1) which show the

work of this Sbox when the left of Cr′ with y bit called αpre is input of

V(I − O)Sbox2 which go to S3 which its contain on table of bits. αpre and

its number of y bits are index of this table to out new bits with size y bit

called OS3. Then exclusive-OR (XOR) process is performed with the

output of S3 (OS3), left bits of key Oi and the output of V(I −
O)Sbox1 (αsuf). Then the result, called RS2, is the input of S4 which it

contains on table of bits and the input with its number of y bits are index of

this table to out new bits with size y bit called OS4. Then the βpre takes

the bits of OS4 as output of V(I − O)Sbox2.

2.1 𝐒𝟑

This sbox can be written as a table with set of random elements is shown in

table (4) and arranged by depending on number of bits (y) for αpre. S3 has

value and y bit for input αpre as they index of table and output new value

with y bit called OS3. See the following procedure that shows the work of

 S3.

Procedure 𝐒𝟑 (𝛂𝐩𝐫𝐞 as input, 𝐎𝐒𝟑 as output)

R19=y mod 8, where y is number of bits for αpre

Case R19 of

0 : R20[s]=αpre/8 ,divide the input into sets of 8 bit and each set is saved in array called

R20[s],where [s] is number of set.

 R21[s]= S3(R20[s],8), R20[s] consider as input to S3 when the value of R20[s] in hex and the

number of y which equal to 8 as they index of table (3). The output is new sets of 8 bit and

each set is saved in array calledR21[s], where [s] is number of set.

 R21mer=R21mer&R21[s], merge the sets of array which each with 8 bit into one set with y

bit.

 OS3=R21mer

1 or 2 or 3 or 4 or 5 or 6 or 7: if (y<8) then
 begin

 R22=left(αpre, R19),cut R19bits value from left of input

 R23= S3(R22, R19),where R19 is equal to 1 or 2 or 3 or 4 or 5 or 6 or 7.

 OS3=R23
 end

 else

if (y>8) then
 begin

 R22=left(αpre, R19),cut R19 bits value from left of input

 R23= S3(R22, R19),where R19 is equal to 1 or 2 or 3 or 4 or 5 or 6 or 7.

 R24=right(αpre,y- R19)

 αpre2=R6

 R25[s]=αpre2/8 , divide αpre2 into sets of 8 bit and each set is saved in array calledR25[s],

,where [s] is number of set.

JOURNAL OF COLLEGE OF EDUCATION
NO.3………..….………..…….…2017

106

 R26[s]= S3(R25[s],8)

 R26mer=R26mer&R26[s], merge the sets of array which each with 8 bit into one set with y

bit.

 R27= R23& R26mer.

 OS3=R27

 end

end of case

Table 4 proposed S3

Y

1 1 0

2 0 3 2 1

3 0 4 6 7 5 1 2 3

4 0 C 8 5 F 2 1 7 3 9 E B 4 D A 6

5 4 1 2 3 10 11 14 9 A 7 E B C D 8 13 12 0 1F 15 6 F 16 18 5 19 1A 1C 1B 1D 1E 17

6 3A 3F 30 2D 4 5 0 1E 3C 6 16 B C D 23 F 10 11 9 E 36 15 7 26 18 19 1A 1B 1C 1D 31 1F 20 8 22 39
3E 25 3B 27 28 29 2A 2B 2C 17 2E 2F 2 21 13 33 34 3 35 37 14 38 12 24 3D 1 32 A

7 0 6 2F D 75 5 56 7 8 9 3 B C 39 E 3C 5E 1 12 13 14 3F 16 17 18 5C 1A 42 1C 1D 1E 1F 55 73 22 5D 6F
10 62 27 4A 33 54 2B 2C 2D 2E 2 30 60 28 29 35 34 19 15 24 47 F 3B 67 78 3E 7D 40 41 7B 48 4C 45
7A A 3A 77 69 4B 3D 61 70 4F 50 23 52 59 2A 37 32 57 58 53 5A 20 36 76 11 46 31 71 26 63 64 5F 66
1B 68 5B 6A 6B 38 51 6E 6C 49 7E 72 21 74 44 6D 25 4 79 65 43 7C 4E 4D 7F

8 3C E2 44 3 BB 1 A 28 E8 9 51 8C 3F C0 FC 50 A2 70 95 12 17 C3 B7 86 19 32 47 58 55 1D E0 8B DB

D2 22 23 CD 56 26 27 5 4D 11 18 D6 2D 2E 2F 30 24 2B 33 82 9D CA 7E 38 FF 80 3B 14 3D 3E C DD
BA 42 13 2 45 46 CE 48 AA 4A 8D 4C 29 F5 4F 2C 6 F3 53 FD 1C A3 57 E6 D4 EE 7D 5F F7 B B4
AC EF 99 60 64 65 E5 67 9B 69 BE 59 5E 6D 6E 6F 2A 98 54 73 61 A9 76 77 75 7C 8 7B 79 6B 37 7F
3A 81 F A7 84 85 0 B1 90 89 B2 10 8E 4B 6C F6 6A 91 92 F2 94 D3 96 97 71 62 9A 68 9C 49 9E 9F
A0 D7 1F 66 AE A5 DE 83 A8 78 ED AB C5 AD FE AF B0 7 BD 35 8F B5 DF F8 B8 B9 41 4 E 8A F0
BF D C1 5D 39 C4 63 B3 C7 D5 C9 5A CB CC F4 52 CF D0 D1 21 BC 5B C6 34 A1 87 D9 DA 20 DC
40 A6 93 1E E1 D8 E3 5C 72 1B E7 7A E9 EA EB EC C8 36 74 B6 F1 31 88 1A 4E E4 C2 16 F9 FA
FB 43 25 A4 15

2.2 𝐒𝟒

This sbox can be written as a table with set of random elements is shown in

table (5) and arranged by depending on number of bits for RS2 . S4 has

value and y bit for input RS2 as they index of table and output new value with

y bit called OS4. See the following procedure that shows the work of S4.

Procedure 𝐒𝟒 (𝐑𝐒𝟐 as input, 𝐎𝐒𝟒 as output)

R28=y mod 8, where y is number of bits for RS2

Case R28 of

0 : R29[s]=RS2/8 ,divide the input into sets of 8 bit and each set is saved in array called

R29[s],where [s] is number of set.

 R30[s]= S4(R29[s],8), R29[s] consider as input to S4 when the value of R29[s] in hex and the

number of y which equal to 8 as they index of table (4). The output is new sets of 8 bit and each

set is saved in array calledR30[s], where [s] is number of set.

JOURNAL OF COLLEGE OF EDUCATION
NO.3………..….………..…….…2017

107

 R30mer=R30mer&R30[s], merge the sets of array which each with 8 bit into one set with y

bit.

 OS4=R30mer

1 or 2 or 3 or 4 or 5 or 6 or 7: if (y<8) then

 begin

 R31=left(RS2, R28),cut R28bits value from left of input

 R32= S4(R31, R28),where R28 is equal to 1 or 2 or 3 or 4 or 5 or 6 or 7.

 OS4=R32
 end

else

 if (y>8) then

 begin

 R31=left(RS2, R28),cut R28bits value from left of input

 R32= S4(R31, R28),where R28is equal to 1 or 2 or 3 or 4 or 5 or 6 or 7.

 R33=right(RS2,y- R28)

 RS22=R33

 R34[s]=RS22/8 , divide RS22 into sets of 8 bit and each set is saved in array called R34[s],

,where [s] is number of set.

 R35[s]= S4(R34[s],8)

 R35mer=R35mer&R35[s], merge the sets of array which each with 8 bit into one set with y

bit.

 R36= R32& R35mer.

 OS4=R36

 end

end of case

Table 5 proposed S4

Y

1 1 0

2 2 1 0 3

3 5 6 2 0 4 3 1 7

4 3 8 2 4 9 5 6 7 1 F A B 0 D E C

5 C 1 1A 3 6 11 E 7 8 9 A 1D 2 B 4 F 10 17 1B 13 16 15 0 1E 18 19 5 12 D 14 1C 1F

6 0 7 2F 37 24 3A 31 1E 16 9 A 3 E D 25 F 10 1 12 13 5 15 32 26 18 19 1A 1B 20 14 11 1F 1C 21 22 23 8
29 17 27 C 36 28 2B 2 6 2E 2C 30 39 B 33 4 35 2D 1D 38 34 2A 3B 3C 3D 3E 3F

7 5A 1 6D 7F 4 68 6 7 20 9 A 60 C D E 23 75 5F 32 1A 28 18 16 17 50 19 13 1B 29 55 5D 62 8 3F 22 58
2B 2C 2F 1E 39 72 3A 24 14 B 54 30 3B 2E 12 33 4D 70 36 37 38 7D 2A 53 3C 3D 0 74 4B 79 42 43
40 45 46 11 1F 49 27 F 4C 34 61 4F 15 51 52 2 73 1D 56 57 3E 59 25 5B 21 77 5E 47 2D 7B 6A 63 64

65 66 5C 67 69 48 6B 6C 44 6E 6F 35 71 1C 31 5 41 76 4A 78 4E 7A 10 7C 26 7E 3

8 0 61 2 3 4 1A 6 7 DD FE A 2B C 48 E F 10 6D 12 13 83 15 B1 B7 8E 19 5 1B 1C A0 9D 1F AE 58 33
23 24 6A 26 D3 64 99 DE AF 2C 2D 2E 9B DB 31 73 B4 51 A3 36 37 4B 39 3A 3B 9E 3D 8C 32 C1
CC D9 D7 44 45 46 47 7B 49 4A 25 96 CE 9F C9 50 B5 52 53 54 55 DC 2F 16 77 5A 5B 5C 3E C5 5F
30 F4 62 63 28 D5 65 D4 68 BA CA D BB 80 6E 6F 70 F6 35 8 74 27 EE C8 41 18 DF F8 F9 7D FB 7F
CF 5D 82 76 84 86 85 87 88 89 8A 8B 9 F2 1 7C 56 91 92 AA 94 F5 5E 22 98 8D 9A B3 9C 97 66 40
FF A1 A2 C4 A4 A5 95 A7 A8 A9 42 AB C3 AD B6 E5 B0 C0 B2 43 38 A6 20 17 FC D1 CB 6C 1E
BD BE BF CD 75 C2 34 EF AC C6 C7 71 4F 3F 69 78 21 1D 11 D0 B9 D2 81 67 29 D6 E2 D8 93 DA

B8 90 3C 2A 7A E0 E1 B E3 57 72 14 E7 E8 E9 EA EB EC ED 4C E6 F0 F1 BC F3 79 6B 59 F7 4E 8F
FA 7E FD 60 E4 4D

JOURNAL OF COLLEGE OF EDUCATION
NO.3………..….………..…….…2017

108

A. The general flowchart of proposed algorithm

In this section will introduce a general flowchart in figure (3) to describe

the work of proposed algorithm.

Fig. (3): A general flowchart of a proposed algorithm

B. The practical implementation of proposed algorithm

At first to generate two new variable input-output key dependent SBoxes

by generate four fixed SBox S1, S2, S3, S4 where they have random and

no iteration positions in case (2≤ y ≤8). Then insert these Sbox to a

proposed algorithm which has a proposed key schedule. The result shows

that an algorithm has a good structure, it has a high linearity complexity

(6n) rather than (1n) where n is number of operations in one round, it has

an increase in the speed, and it is more random compared with a previous

elastic block cipher algorithm as shown in the following tables (5) and (6)

of randomness and NIST tests respectively when the proposed algorithm

has smaller values in the most results.

JOURNAL OF COLLEGE OF EDUCATION
NO.3………..….………..…….…2017

109

Table 5 The randomness tests

The tests frequency serial Poker autocorrelation Run

Elastic algorithm [4] 0.40 1.60 2.05 0.25 21.69

Proposed elastic

algorithm

0.98 1.15 3.67 -1.25 11.44

Table 6 NIST statistical tests
No. NIST test Elastic algorithm

[4]

Proposed elastic

algorithm

1 Frequency 0.5022 0.8025

2 Block frequency M=128 0.8818 0.9997

3 Runs 0.4775 0.0169

4 Longest Runs of Ones 0.3247 0.0437

5 Rank 0.3576 0.1959

6 FFT 0.2629 0.3018

7 NonOverlapping Templates m=9 0.5260 0.4872

8 Overlapping Templates all ones B=’111111111’ 0.0423 0.0351

9 Universal statistical L=6 & Q=1000 0.7864 0.6532

10 Linear complexity M=500 0.1842 0.4087

11 Serial m=12
0.3310 0.0656

0.5001 0.6851

12 Approximate Entropy m=8 0.1365 0.0715

13 Cumulative Sums (Forward) 0.5219 0.9784

C. The conclusions

This paper proposes a new elastic block cipher algorithm with any network

(substitution-permutation (SP) or Feistel) compared with the existing

method that provides a Feistel-based variable length block cipher only.

A proposed algorithm allows us to “stretch” the supported block size up

to double of the original block size with do not use plaintext padding

process. This new structure has a good construction because it uses two

proposed S-Boxes which depend on keys inside a one cycle rather than use

XOR operation as in an existing elastic structure.

A number of round r′ in the new elastic algorithm is decreased into (r)

in a Substitution Permutation (SP) network of exiting block cipher. And it

equal to (r*2) in a balanced Feistel network rather than (r+[ry/b]) in

existing elastic algorithm that cause to increase the speed of algorithm.

The complexity of a proposed round function of G′ is increased to (6n),

where n is the number of operations in one round, with preserve on the

speed at the same time because the round function of G′ use faster

operations which consist of lookup in the table of S-Box and XOR

operation. While in round function of G, the complexity is (1n) because it

is use one operation (XOR operation). So the security of a new elastic

JOURNAL OF COLLEGE OF EDUCATION
NO.3………..….………..…….…2017

110

structure and the randomness are increased when (y) value is increased

forward to (b) bit while the existing elastic structure is vulnerable and has

less security.

The existing elastic network has a weakness point when encrypt multiple

blocks with using a fixed secret key that mean it has not well designed of

key schedule. The new elastic network has good structure and good key

schedule to prevent this weakness point in elastic network. A proposed key

schedule has strong properties that derived from NPCBC mode.

References

[1] Cook, D., Yung, M., & Keromytis, A. (2004), ” Elastic Block

Ciphers“,Columbia University.

[2] Patel, S., Ramazan, Z., & Sundaram, G. (2007),“ Constructions of

variable input length cryptographic primitives for high efficiency

and high security”, Patent Appliaction publication, pun. No.

US20030191950.

[3] Bellare, M., Rogaway, P. (1999),” On the Construction of Variable –

Input length ciphers”, In: Knudsen L. (eds) Fast Software Encryption.

FSE 1999. Lecture Notes in Computer Science, vol 1636. Springer,

Berlin, Heidelberg.

[4] Cook, D., Yung, M., & Keromytis, A. (2007),”Elastic Block

ciphers:the basic design”, ASIACCS '07: Proceedings of the 2nd ACM

symposium on Information, computer and communications security.

[5] Cook, D., Yung, M., & Keromytis, A. (2004),” Elastic Block ciphers:

The feistel cipher case”, Columbia University.

[6] Zhang, L., Wu, W., Zhang, L., Li, Y. (2009), “A note on Cook's elastic

block cipher”, Conference: Proceedings of the 2009 ACM Symposium

on Information, Computer and Communications Security, ASIACCS

2009, Sydney, Australia, March 10-12.

[7] Lee, J., Koo, B., Roh, D., Kim, W. & Kwon, D. (2016),”Appartus and

method for providing feistel based variable length block cipher”.

Patent Appliaction publication, pun. No. Us 2016/0056954 A1.

[8] Gu Dawu and Wang Yi, “On the Techniques of Enhancing the

Security of Block Ciphers”. ACM SIGOPS Operating Systems Review

35(4):94-96 · October 2001.

[9] Stallings, W. (2005),” Cryptography and Network Security

Principles and Practices, Fourth Edition”, Prentice Hall.

[10] Daemen, J., & Rijmen, V. (1999) “AES Proposal:

Rijndael“,Available:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

10.1.1.36.

