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Abstract

The dual concept of coclosed rickart modules is defined in this paper. Consider M as a right
module over an arbitrary ring R with identity where S = Endg (M) is the endomorphism ring
of M. We call a module M is dual coclosed rickart when every f € Endgz(M), Im f is a
coclosed submodule of M. Number of conclusions are gained and some connections between

these modules and other related modules are studied.
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1 Introduction

Following Ghaleb [2], M is told coclosed rickart whenever every f € Endgz(M), Ker f is
coclosed of M. A submodule N of M is said small in M whenever K <M, N + K = M yield

K = M. We say a submodule L of a module M is coclosed in M when % 3¢ % then L =K

foreach K < L [1]. Equivalently, for each proper submodule K c L, there is a submodule N
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of M where L + N = M while K + N # M iff L is coclosed of M. In [3] a generalization of
dual rickart modules is presented by using the concept of purity. Our purpose of the paper is
to consider the dual concept of coclosed rickart modules as another generalization of dual
rickart modules. We name M is dual coclosed rickart when each f € Endgz(M ), Imf is a
coclosed submodule in M. Other studies in [5],[6],[7].[8].[9].[10],[11] and [12] is related

topics.

The paper contains three parts. In part two, we investigate concept of dual coclosed rickart
modules and supply basic properties of this concept. We see that direct summands of dual
coclosed rickart modules gain the property (Proposition 2.6), this is not so for direct sums
(Remark 2.7). We get a condition which allow direct sums of dual coclosed rickart modules to
be dual coclosed rickart (Proposition 2.8). We look for any connection between dual coclosed
rickart modules and other modules. We see that dual coclosed rickart modules and dual rickart
modules coincide in lifiting modules (Proposition 2.12). The concept of relatively dual
coclosed rickart modules is presented and studied in section three. By using the CCSP, we
will provide a condition for modules to be relatively dual coclosed rickart ( for example,
Theorem 3.3, Proposition 3.10) where a module M is hamed to be gain coclosed sum property
(in short CCSP) when the sum of two coclosed submodules of M is coclosed [4]. Many
results are investigated, we find that family of rings R for which each right R-module is
relatively dual rickart is right cosemisimple (Proposition 3.12).

2 Dual Coclosed Rickart Modules

Dual coclosed rickart modules is studied within this part. Basic facts of this type of modules
are investigated. We begin with the next.

Definition 2.1. consider M as a module over R. We call M is dual coclosed rickart when each
f € Endgz(M), Imf is a coclosed submodule of M.

Remarks with Examples 2.2.

(1) Clearly each cosemisimple module is dual coclosed rickart but not conversely, where
M is told cosemisimple whenever any submodule of M is coclosed [1]. For example,
the module Q as Z-module is dual coclosed rickart since every endomorphism of Q
is either zero or an isomorphism but its not cosemisimple.

(2) obviously each dual rickart module is dual coclosed rickart but not conversely.

Discuss the ring R = [[;»1 F; with F; = F is a field for each i > 1. Obviously R is
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not semisimple then by [10, Theorem 2.24], find a module M may not Rickart. beside

this, R is commutative regular (in sense von Neumann) then by [1], R is
cosemisimple (V-ring) implies that Rad(%) =0 where N a submodule of M.

Hence any submodule is coclosed, therefore M is dual coclosed rickart.

(3) When M is a coclosed simple modul yield M need not be dual coclosed rickart, where
a module M is named coclosed simple when M = {0} and it is gain no coclosed
submodules except {0} and M [4]. For example, Z, as Z-module is coclosed simple,
while it is not dual coclosed rickart since there exists an endomorphism f : Z, —
Z, by f (m) = m2 foreach m € Z,, thus Imf = {0,2} is not a coclosed
submodule in Z,.

(4) When M is coquasi-Dedekind module yield it is dual coclosed Rickart, where modul
M # 0 is called coquasi-Dedekind when every 0 # f € Endg(M), Imf = M
[14]. The reverse is not hold as follows. Zs as Z-module is dual coclosed rickart
whereas it is not coquasi-Dedekind.

(5) When M is a dual coclosed rickart coclosed simple over R, implies it is coquasi-
Dedekind.

Proof. Let 0 = M be a dual coclosed rickart over R, 0 # f € Endg(M), implies
Im f is a coclosed, but M is coclosed simple implies that Im f = M. This mean M
is coquasi-Dedekind.

(6) M is dual coclosed rickart, implies M may not be coclosed rickart. For example, Zj
over Z such that p is a prime, it is not difficult find Im f = Z,~ for each
f € End g (Z,= ), in fact, Z,~ is coquasi-Dedekind then by Remark 4, it is a dual

coclosed rickart. But Z,= is not coclosed rickart because there exists an

n
m-—1

endomorphism  f : Z,o — Z,« defined by f(pm + Z) > + Z, for each
neZ and m is a positive integer implies ker f =< §+ Z > is not a coclosed
submodule in Ze.

(7) When M is coclosed rickart, implies it is may not be dual coclosed rickart. Such as Z
is coclosed rickart since ker f =0 for every f € End z(Z),. But Z is not dual
coclosed rickart since for any endomorphism f:Z — Z via f (m) = nm for

eachm € Z,Im f = nZ not coclosed in Z, with n an integer greater than one.

Proposition 2.3. The dual coclosed rickart property under an isomorphism is translated.
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Proof. Let M, and M,be modules over R, M; is dual coclosed rickart with f: M; — M, is
an isomorphism. Assume ge Endz( M, ), we prove that Img is coclosed submodule in M.
Study K is any proper submodule in M, , K c Img, f 1(K) c f~l(Img). But
f~t(mg)=Im ( f~1gf ), to show this. Let x € f~1(Img), x = f~1(y), y elmg so
there is m € M, such that g(m) = y. On the other hand, because f is an isomorphism,
there existn € M; and f(n) = m. It follows that x = f~1gf(n) , this means that x € Im
( f~Ygf ). The reverse inclusion is clear. This means that f~*( K ) c Im ( f~1gf ), but
flgf € Endg(M;) and M, is dual coclosed rickart then Im( f~1gf ) is coclosed
submodule and so there exist a submodule N of M; , f~1(Img) + N = M; but f~}(K) +
N # M. This means that Img + f (N) = M, but K + f (N) # M,, that is Img is a

coclosed submodule in M,. Hence M, is dual coclosed rickart.

Examples 2.4.

(1) M is dual coclosed rickart with N a submodule, found N need not be dual coclosed
rickart, as the following. Q@ as Z-module is dual coclosed rickart whereas the

submodule Z of Q is not a dual coclosed rickart as Z-module. Another example, Zj
as Z-module is dual coclosed rickart, let N =< p—lz + Z > be the submodule of Zp,«
generated by p1—2+ Z. Easily to check N = Z,2 not dual coclosed rickart over Z for
each prime number p.

(2) If each proper submodule in M is dual coclosed rickart, yield M need not be dual
coclosed rickart. See Z, over Z in which every proper submodule is simple module,
so they are dual coclosed rickart, while Z, is not dual coclosed rickart.

We record the next from (14).
Lemma 2.5. Assume M is a module over R together with K ¢ N submodules in M. when
K coclosed of M, yield K coclosed of N. The reverse is hold when N is coclosed of M.
Proposition 2.6. Each summand of a dual coclosed rickart module is dual coclosed rickart.
Proof. Assume M is a dual coclosed rickart over R with A a summand, then M = A®B
where B a submodule. Let f e Endzg(A), then we have the following

A@BiALA—l;M. Say g = if p, then g e Endg( M), implies Im g is coclosed in
MMWepossessg (M) = (if p)(M) = (if)A) = i(f ) = f(A),yield Img=Imf.



2015 Juill donl sl ol Koo — Y n@rwiond U iio by
LS L

This means Im f is coclosed. But A is containing Im f, therefore by lemma 2.5, Im f is

coclosed of 4. Hence 4 is a dual coclosed rickart module over R.

Remark 2.7. A Direct sum of dual coclosed rickart modules is not necessary dual coclosed

rickart. For example, M = Z,~ ® Z,, as Z-module. Consider f: M — M via f(% +7Z,

ﬁ) =(%+Z, 0) wherem € Z, t = 0,1,2,... and i € Z,. Then Imf = Z,® 0 which

is not coclosed in Z,~® 0, and hence it is not coclosed in M. Therefore M = Lpo ® Ly, is

not dual coclosed rickart, while Z,~ and Z, are dual coclosed rickart.

Recall a submodule N of M is named fully invariant when f(N) is included in N for
each f € Endgz (M) (16). We name M duo when each submodule is fully invariant [13].

Proposition 2.8. Assume M = @;¢; M; is a duo R-module for an index set A. M is a dual

coclosed rickart iff M; isa dual coclosed rickart foreachi € A.

Proof. The first side according to Proposition 2.6. For the convers, let M = @;¢; M; and
f=(fij) €Endg(M), f;; € Homg(M;, M;). Since M; is fully invariant in M = @®;¢; M;,
follows Homg(M;, M;) = 0 for each i # j [13, Lemma 1.9]. Further f(M;) € M; for all
i € A, this implies that Imf = @;cx Im f;;. Our assertion is that Imf a coclosed in M. To
show this, assume < @;cp Im f;; , K is fully invariant submodule. From [13, result 2.1].
K=8@icp (KN M), letK; = KnM; foreachi € A. Obviously K; S Im f;;. Since M; is a
dual coclosed rickart module implies that Im f;; is a coclosed in M; for all i € A. Thus there
is a submodule N; , Imf; + N; = M; but K; + N; # M;. This implies that (D;ecs Im f;;) +
QieaNi) = Diea M, but (Dier Ki) + CieaNi) # Diea My Put N =Y, N; . So we
have Imf+ N =M but K+ N # M and hence Imf is coclosed .

Proposition 2.9. The next are balance
(1) ®,R isadual coclosed rickart over R for any index set A.
(2) All projective modules are dual coclosed rickart.
(3) All free R-modules are dual coclosed rickart modules.

Proof. (1) = (2) Study M as projective over R yield a free module F over R is found with an

epimorphism f : F——> M. Because F = ®@,R for some index set A. We gain 0 — ker f
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i>€r),\R LM — 0. But M is projective then the sequence splits. Thus ®,R = ker f & M.

Because @ R is dual coclosed rickart, therefore via Lemma 5, M is dual coclosed rickart .
(2) = (1) ltisclear and (1) < (3) Similar proof of (2) < ().
Let us see the next condition (*) for a module over R :

For any submodule N of M for which N = H where H is a summand in M, yield N

coclosed.
Proposition 2.10. The condition (*) is satisfied in each dual coclosed rickart module

Proof. Discuss N, H as two submodules in M and H summand in M with N = H. So we

have f: H —» N is an isomorphism, M AH L N where p is the natural projection map of M
onto H. Let = fp , then g € Endy(M) and Img = fp(M) = N. By assumption, M is dual

coclosed rickart and hence N coclosed in M.

Corollary 2.11. Assume M is dual coclosed rickart over R with the condition (*) for each

submodule N in M, then M is cosemisimple.
. Proof. Obvious via result 2.10.
Proposition 2.12. Each lifiting dual coclosed rickart module is dual rickart.

Proof. Assume M is lifiting coclosed rickart over R with f € Endiz(M ). Because M

Im f

lifting, find a direct summand K, K € Im f and — < % Because M is dual coclosed

rickart, implies Im f is a coclosed, therefore Im f = K, as desired.
Recall M is cohopfian if each monomorphism f € Endz (M) isan isomorphism [1].

Proposition 2.13. When M is a dual coclosed rickart coclosed simple over R yield it is

cohopfian.

Proof. Let 0 # f € Endgz(M) is a monomorphism. Because M is dual coclosed rickart, then
Imf is a coclosed submodule. But M is coclosed simple and f # 0,s0 Imf = M. That is

f is an epimorphism and hence M is cohopfian.

3 Relatively Dual Coclosed Rickart Modules
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Relatively dual coclosed rickart modules is discussed in this place. Basic facts of this modules

are presented. The type of right cosemisimple (V-rings) rings R is shown to be exactly that for

which each right R-module is relatively coclosed rickart. Our focus, in this part is on the

question: When do certain R-modules have the relatively dual coclosed rickart property.

Definition 3.1. We name M is relatively dual coclosed rickart module to other N if each f €
Homg (M,N ), Imf is coclosed of M.

Thus, as special case, M is dual coclosed rickart iff M is relatively dual coclosed rickart to

M.

Remarks and Examples 3.2.

@

O]

©)

(4)

®)

One can easily see that when N is cosemisimple R-module, implies each module over
R is relatively dual coclosed rickart to N.

When M is cosemisimple module over R then M need not be relatively dual
coclosed rickart to an R-module N. For example, Z, as Z-module is cosemisimple
while it is not relatively dual coclosed rickart to Z, as Z-module, since there exists
the homomorphism f:7Z, - 7Z, via f(m)=m2 for each me€ Z,. Then
Im f = {0,2} which is not coclosed in Z,.

M is relatively dual coclosed rickart to N, leads N may not be relatively dual
coclosed rickart to M. For example, let Z, and Z as Z-modules. Then Z, is relatively
dual coclosed rickart to Z for each positive integer n greater than one, in fact
Homy(Z4,Z) = 0. Also, Z is not relatively dual coclosed rickart to Z,, since there
exists a homomorphism f € Homy(Z, Z,) defined by f(m) = m2 foreachm € Z,
implies that Imf = {0,2} is not coclosed in Z,.

When M is a dual coclosed rickart module over R, implies M need not be relatively
dual coclosed rickart to N as R-module as follows, Z, as the Z-module is dual
coclosed rickart where p is prime. But Z, is not relatively coclosed rickart to Z,~ as
Z-module because there exists the inclusion homomorphism i € Homg ( Z,, Zye ) ,
implies that Imi = Z,, which is not a coclosed submodule in Ze.

If M is relatively dual coclosed rickart to an R-module N, then M may not be dual
coclosed rickart. For example, consider the Z-module Z, is relatively dual coclosed
rickart to the Z-module Zs, because Homy ( Z4, Zs) = 0. But Z. is not dual coclosed

rickart.
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(6) When M is a coclosed simple or coquasi-Dedekind module over R, implies M need
not be relatively dual coclosed rickart to N as R-module as follows, Z, as Z-module
is coclosed simple and coquasi-Dedekind but not relatively dual coclosed rickart to

Z, as Z-module.

Theorem 3.3. The next statements are equivalent
(1) M is relatively dual coclosed rickart to N.
(2) For each submodule B of N, each summand A in M is relatively dual coclosed

rickart to B.

(3) For ech summand A of M, for each coclosed submodule B in N and any f €
Homp (M, B), the image of the restricted map f|4 is coclosed of A.
Proof. (1) = (2) Assume M is relatively dual coclosed rickart to N. Assume A is a smmand
. f
in M, B asubmodule of N.Let f € Homp (4,B). Study the next M =A@ H> A5 B

SN for wher H a submodule of M. Say g = i f p € Homgz(M, N). This implies that Img is
a coclosed submodule in N. Then g(M) = (i f p)(M) = (i f)(A) = i(f(A)) = f (4
and hence Imf is coclosed in N. But B is containing Imf, thus by lemma 2.5, Imf is coclosed

in B. Therefore A is relatively dual coclosed rickart to B.

(2) = (3) Assume A is asummand of M with B coclosed in N. Let f € Homg(M, B),
implies |4 € Homg (4, B). Since A is relatively dual coclosed rickart to B implies Im f|,

is closed in B.
(3) =(2) Obviously by taking A = Mand B = N.

The next two lemmas are in [4].

Lemma 3.4. Discuss M as a module over R. CCSP is gained via M iff each coclosed of M
has the CCSP.

Lemma 3.5. Assume M is a module over R gains CCSP, implies for each decomposition
M = A® B, foreach f € Homy (4,B), Imf is acoclosed submodule in M.

Theorem 3.6. Assume M is a module over R with CCSP. When A®B is coclosed in M.
Yield A is relatively dual coclosed rickart module to B.
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Proof. Assume that M has the CCSP. Then by lemma 3.4, every coclosed submodule of M
has the CCSP implies that A®B has the CCSP. By lemma 3.5, for every f € Homy (A4,B),
Imf is acoclosed submodule in A®B. But Imf < B and Imf is a coclosed submodule in B.

Hence A is relatively dual coclosed rickart to B.

As an immediate consequences we have

Corollary 3.7. Assume M and N as modules over R. If M®N has the CCSP, then M is
relatively dual coclosed rickart to N.

Corollary 3.8. When M®M gains CCSP, implies M is dual coclosed rickart module.

Remark 3.9. The innverse of Result 3.7 is not hold any time. Discuss Z, as Z-module is
relatively dual coclosed rickart to Z, over Z. While Z, @ Z, over Z does not have the
CCSP. To show this, let A = (1,0)Z and B = (1,2) Z be the submodules generated by
(1,0) and (1, 2) respectively. It is clear that A, B are summands in M, implies that A, B are
coclosed submodules in M. It is not hard to see that A + B = {(0,0), (0,2), (1,0), (1,2)} is
not summand of M. Further Z, @ Z, is lifting , implies that A + B is not coclosed in
7, ® IL,.

Proposition 3.10. Assume { M; };c, is a set of modules over R where A = {1,2,...,n}and N

a module over . Study the next equivalence

(1) If N has the CCSP, then @, M; is relatively dual coclosed rickart to N.

(2) M; is relatively dual coclosed rickart to N for each i € A

Proof. (1) = (2) is immediately from Theorem 3.3.

(2) = (1) M; is relatively dual coclosed rickart to N forall i = 1,2,...,n and N has
the CCSP. To show that @L; M; is relatively dual coclosed rickart to N, let f € Homg
(D1 My, N), f=(fi)iexn and fly, = fi: M; > N is an R-homomorphism for each
i =12,..,n.ThusImf = Y, f;( M;).ButImf; is a coclosed submodule in N and N has
the CCSP, therefore Imf = Y7, f; (M;) is coclosed in N, and hence @]-, M; is relatively

dual coclosed rickart to N.

Corollary 3.11. Assume { M; };c, is a set of modules over R where A = {1,2,...,n}. Then

the following are equivalent
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(1) If M; has the CCSP for all j € A, then M; is relatively dual coclosed rickart to
@111=1Ml

(2) M; is relatively dual coclosed rickart to M; forall i = 1,2,...,n.

Cosemisimple rings via relatively dual coclosed rickart modules over R is characterized via

the next.

Proposition 3.12. Discuss next equivalence.
(1) R is cosemisimple right R-module.
(2) All R-modules are cosemisimple.
(3) All R-modules are relatively dual coclosed rickart.
(4) All R-modules have CCSP.
(5) All flat modules over R have CCSP.
(6) Every projective modules over R have CCSP.

Proof. (1) < (2) follows by [1, Theorem 1.12], (2) = (4)=(5)=(6)and (2) = (3) s

obvious.

(3) = (1) Let I be an ideal of R. By assumption, [ is relatively dual coclosed
rickart to R over R. Then for every f € Homg (I,R), Im f is coclosed in R. Since i €

Homg (I, R), implies Im i = I is coclosed in R. Hence R is cosemisimple.

(6) = (1) Consider I as a submodule of R, find a projective module F over R, an
epimorphism a : F - I. Leti: I —» R be the inclusion fuction. Then we have ia : F - R.
Since F @ R is projective. By assumption it has CCSP. By Lemman 5, Imia =Imi =1

is coclosed of R as asserted.
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