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Abstract

In this paper, we introduce another type of quasinormal operator is
called (K-N)*-quasinormal operator and give some properties of this
concept with basic relations have been given.
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1-Introduction

Recently many researchers studied the quasinormal operator concepts, such
as S. A. Alzuraigi, A.B. Patel in 2010, [3], introduced n-normal operators
on a Hilbert space H. and given some basic properties of these operators
also, S. Panayappan and N. Sivamani in 2012,[6], introduced the concept of
A-quasinormal operators acting on Hilbert spaces H and in 2015, Salim D.
M and Ahmed M.K. [5],introduce another class of normal operator which
is (K-N) quasi-normal operator and givensome properties of this concept as
well as discussion the relation between this operator with another types of
normal operators, but Sivakumar N. andBavithra V.in 2016,[4],introduced
the generalization of the above operator called the (K-N) quasi n normal
operator and study some basic properties. Finally Eiman H. Abood and
Mustafa A. Al-loz in 2016, [2],

introduce some types of generalizations of (n, m) -normal powers
operatorsand study some of them properties.

In this paper we given more generalized of quasinormal operator which is
(K-N)*-quasinormal operator with some properties of this concept.

2- Some types of quasinormal operator
We recall some types of quasinormal operator with important properties of
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these concepts as well as relations behind of these concepts, and we start by
the definition of quasinormal operator.

Definition (2.1),[3]:-

A bounded linear operator A:H——H, where H is Hilbert space
then A is said to be quasinormal operator if satisfy:-
AA'A) =(A"AA

To illustrate that consider the following example.

Example (2.2):-

Let H=/7,(¢)={X = (X, Xy, Xg,eer. ):i|xi|2<oo,xie¢,i:1,2 ..... } and let U
i=1l

and B the unilateral shift operator and the bilateral shift operator such that:
U: X ——X defined by; U(x,,x,,...)=(0,%.,X,,...) V(X X, ,...) € £, (0)
and B: X ——X defined by B(x,%,,..)=(X,,X,,...) V(X Xg,e) € £, (6)

Such that U™ =B then U is quasinormal operator.

Proposition (2.3),[3]:-
Let AcB(H) be quasinormal operator then:-

(1) A" is quasinormal operator.
(2) A" is quasinormal operator where n is any positive integer.
(3) (A™)is quasinormal operator.

Remark (2.4):-

Let A,BeB(H)be two quasinormal operators then AB and A+Bare not

. . . 0 -2
necessary to be quasinormal. To illustrate that, we will take A:{zi 0']

B{? j are two quasinormal operators on (¢) Hilbert space but

0 —i| . : . 0 i
A+B:{_ } IS not quasinormal operator, also if we takeAz[ i 0},

3



JOURNAL OF COLLEGE OF EDUCATION..... 2017....... NO.5

2 1 . i 0 .
B= L 0} are two quasinormal operators but, AB ={ 2i } IS not
=41 —1

quasinormal operator.
The following theorem show the necessary condition in order to make
remark (2.4) true.
Theorem (2.5):-
If A BeB(H) be two quasinormal operators then:-

(1) A+B is quasinormal operator if AB=BA=AB=B A=0.
(2) AB is quasinormal operator if AB=BA and AB"=B"A

Now, the following proposition gives to illustrate the relation between

quasinormal operator and (self-adjoint, skew-adjoint, unitary and normal)
operator.

Proposition (2.6):-
If AeB(H) then:-

(1) If A is self-adjoint operator then A is quasinormal operator.
(2)If A is skew-adjointoperator then A is quasinormal operator.
(3) If A is unitary operator then A is quasinormal operator.

(4) If A is normal operator then A is quasinormal operator.

But the converse of above proposition not true in general, to explain that

see the following examples.

Examples (2.7):-

2 2]. . - -
(1) Let A{ ) 2} IS quasinormal operator but it is clear that it is not self-

adjoint operator.
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1 -2]. : i .
(2)Let A{ ) 1} IS quasinormal operator but it is clear that it is not

skew- adjoint operator.

1 2] . . . .
(3) Let A{ , J Is quasinormal operator but it is clear that it is not

unitary operator.
(4) LetH =7,(¢) ={X = (X, X,, Xg,.er- ):i|xi|2 <o, X €¢,i=12..} and let U and
i=1

B the unilateral and the bilateral shift operators such that ;

U : X —— X defined by; U(x,,X,,...)=(0,%,X,,...) V(X X, ,.) € £, (C)
and B: X ——X defined by B(x,,%,,..)=(X,,X,,...) V(X Xg,e) € £, (6)
Such that U™ =B then U is quasinormal operator but not normal operator.

Another type of quasinormal has been given by the following
definition.

Definition (2.8), [1]:-
A bounded linear operator A:H——H is said to be K-quasinormal
operator if satisfy A(A"A)* =(A"A)* A, where k is any positive integer.

To illustrate that consider the following example.

Example (2.9):-
The operatorA:{ 03i ﬂ on Hilbert space ¢*is K-quasinormal operators if

k=2.
Theorem (2.10),[1]:-

Every quasinormal operator is K-quasinormal operator.

Remarks (2.11),[4]:-

(1) When k =1 the K-quasinormal operator can to be quasinormal operator.
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(2)Let A BeB(H)be two K-quasinormal operators then A+B and AB not

. . . 0 3
necessary to be K-quasinormal .To illustrate that, we will take A:{ 3 (ﬂ :
—ol

-2 0 : :
B { . 2} on Hilbert space ¢’are K-quasinormal operators | f k =2
4

_950+468i —312+1035i
Then (A+B)(((A+B)")(A+B))* =
(A+B)(A+B) )(A+B)) {321—1035 —468—950i}

but ((A+B)*(A+B))2(A+B){ —950 - 468i -312+411i}

—-312-10.10351 468 -14i

we get (A+B)((A+B) (A+B))* = ((A+B) (A+B))*(A+B) Therefore A+B is

_ i -1 -1
not  K-quasinormal operators also, IftakeA:L') ;} and B:[i J

on Hilbert space¢* are K-quasinormal operators if k =2 then;

4 -4

60-34i —60-—234i
-128 128 '

}, but ((AB)" (AB))*(AB) =L68+30i 6830

(AB)((AB)"(AB))* {

It clears that (AB)((AB)"(AB))? = ((AB)"(AB))?(AB), therefore AB is not

K-quasinormal operator.

Proposition (2.12):-
(If AeB(H) is K-quasinormal operator then A" is K-quasinormal
operator, where n is any positive integer.
(2) If AeB(H) is K-quasinormal invertible operator then (A™)"is K-
quasinormal operator.

Now, dr.salim and Ahmed [5], introduce generalized of K-
quasinormal operator is said to be (K-N)-quasinormal operator by the

following definition.
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Definition (2.13),[5]:-
A bounded linear operator A:H——H is said to be (K-N)-quasinormal
operator if satisfy A“(A"A) = N(A"A)A* , where k is any positive integer and
N is bounded operator such thatN:H ——H .
Example (2.14):-

Let A: ¢?[01]——¢?[0,], such that (Af )(t) =tf (t) for all f efz[O,l]’t e /[0]]

then A is (K-N)-quasinormal operator.

Theorem (2.15),[5]:-
Every K-quasinormal operator is (K-N)-quasinormal operator.

Remarks (2.16),[5]:-

(1) Where k =1 with N =1 every (K-N)-quasinormal operator can to be
quasinormal operator.
(2) Let A BeB(H)be two (K-N)-quasinormal operators then A+B and AB
not necessary to be (K-N)-quasinormal operators .To illustrate that , we

1 0 -1 1 0 i
will take A=/ 0 2 0 |B=0 0 0 | ,aretwo (K-N) quasinormal
-1 0 1 1 0 -—i

0 0 2
operator on ¢* Hilbert space, but AB={0 0 0 | is not (K-N)-
0 0 -2

2 0 —1+i
quasinormal operator where k=1 and N=1,also A+B=|0 2 0 |is
0 0 1-i

not (K-N)-quasinormal operator where k =1andN =1.
Proposition (2.17):-
(1) Let AeB(H)be (K-N)-quasinormal operator then A" is (K-N)-

quasinormal operator where n is any positive integer.
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(2) if AeB(H) is invertible (K-N)-quasinormal operator then (A™)" is

(K-N)-quasinormal operator where N =(N™)".

Now, the following diagram represents the relation among the above
concepts.
(K-N)-quasinormal operator

|

K-quasinormal operator

T

Quasinormal operator

/N

Normal operator skew-adjoint operator

A\ N

Self-adjoint operator unitary operator

3-Some properties of (K-N)*-quasinormal operator:

In this section we introduce the definition of (K-N)*-quasinormal operator
and illustration this concept via some theorems and examples. We start by
the following definition.

Definition (3.1):-

Abounded linear operator A:H——H is said to be (K-N)*-quasinormal
operator if satisfy A“(A"A)* = N(A"A)* A where k is any positive integer

and N is bounded operator such thatN: H——H ..

To illustrate this definition consider the following example.
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Example (3.2):-

2 00
If A=|0 5 0|operator on Hilbert space ¢*where k=2 and N =1 then
0 09

A is (K-N)*-quasinormal operator.

Remarks (3.3):-

(1) If A is (K-N)*-quasinormal operator and if k=1 with N=1 then A
Is quasinormal operator.

(2) If A is (K-N)*-quasinormal operator and If (A"A)* = A"A then A is
(K-N)-quasinormal operator.

(3) If A is (K-N)*-quasinormal operator and If A=A andN =1 then A is

K-quasinormal operator.

Now, we give proposition to show properties of (K-N)*-quasinormal

operator.

Proposition (3.4):-
Let AeB(H) be (K-N)*-quasinormal operator then A" is (K-N)*-
quasinormal operator where nis any positive integer.

Proof:-

Let A be (K-N)*-quasinormal operator, we prove that by using
mathematical induction, therefor Ais (K-N)*-quasinormal operator, the
result is true for m=1that is A*(A"A)* = N(A"A)* A 0]
we assume the result is true for m=n
(A“(ATA))" = (N(A"A) A" (i)
to prove the result for m=n+1
(A“(ATA))™ = (A" (A A))" A (A" A)

= (N(A"A)* A )" (N(A"A)* A by (i) and (ii),
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= (N(A A A)™* | Thus the result is true for m=n+1 .

Therefore then A" is (K-N)*-quasinormal operator.

Remark (3.5):
Let A< B(H)be (K-N)*quasinormal operator then A™ is not necessary to be

(K-N)*-quasinormal operator. To express that, see the following example.

Example (3.6):-

i 0 O
Let A=|0 1 0 | be (K-N)*-quasinormal operator if k=1 and N =1 but
00 -2i
05 0 -05
A*=/ 0 1 0 [isnot(K-N)*-quasinormal operator.
0 0 O0S5i

Next, to given the condition to make the remark (3.5) true see the

following proposition.

Proposition (3.7):-
If AcB(H) is invertible (K-N)*-quasinormal operator then (A™)" is

(K-N)*-quasinormal operator where N =(N7)".

Proof:-

Since A is (K-N)*quasinormal operator then; A“(A"A)* = N(A"A)* A
By taking inverse and adjoint of both sides we can have;
(A (ATA)) =(NT)(ATAT))((A™)), so (A7) is (K-N)*-

quasinormal operator.
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Remark (3.8):-
Let A BeB(H)be two (K-N)*-quasinormal operators then A+B and AB

not necessary to be true. To show that, considers the following examples.

Examples (3.9):-

(1) Let A{ 02i ﬂ,B:{_Ol OJbe two (K-N)*-quasinormal operators on ¢°

-1 2i

where k=2,N =1, but A+B={ o i

} Is not (K-N)*-quasinormal operator.

(2) Let A:B _02}8:{ Oi ﬂ be two (K-N)*-quasinormal operators on ¢*

2i -2]. :
where k=2,N=1. but ABz{OI Zi} Is not (K-N)*-quasinormal operator.

Now, the following theorem given condition to make the remark (3.8) is

true.

Theorem (3.10):-

If ABeB(H) be two (K-N)*-quasinormal operators then:-
(1) A+B is (K-N)*-quasinormal operator if AB=BA=AB=B A=AB" =BA" =0
(2) AB is (K-N)*-quasinormal operator if AB=BA , BA"=A'B,B'A= AB and

B is quasinormal operator.

Proof:-
(1) (A+B)“[(A+B)" (A+B)]“ = (A" +B*)[(A")“ A + (A")“B* +(B")* A +(B")*B*]
= A“(A"A* + B*(B"B)*
=N(A"A)* A* + N(B"B)*B*
= N[(A+B)"(A+B)]*(A+B)*

Hence A+B is (K-N)*-quasinormal operator.

10
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(2) (AB)“[(AB)"(AB)]“ = A“B*[(A)"(B")" A“B"]
=A[(A)*B*A*(B")*B¥]
= A*(A"A)*B*(B*B)"
= N[(A"A)¥ A*(B*B)*B*]
= N[(A%)* A“A*(B*)*B*B*]
= N[(A*)* A*(B*)* A*B*B¥]
= N[(A")* A*(B*)* A*B*B¥]
= N[(A%)*(B")* A*B*A*B¥]
= N[(AB)"(AB)]* (AB)"
Hence AB is (K-N)*-quasinormal operator.

Now, the following lemma gives to illustrate the relation between (K-
N)*-quasinormal operator and (self adjoint, skew adjoint, normal and
unitary) operator.

Lemma (3.11):-

Let AeB(H)then:-
(1) If A is self-adjoint operator then A is (K-N)*-quasinormal operator.
(2)If A is skew-adjointoperator then A is (K-N)*-quasinormal operator.
(3) If A is normal operator then A is (K-N)*-quasinormal operator.
(4) If A is unitary operator then A is (K-N)*-quasinormal operator.

But the converse of abovelemma in general is not true to explain that
see the following example.
Examples (3.12):

1 1
(1) LetA= 41 if ; then A is (K-N)*-quasinormal operator on ¢* where
4 4

k=2, N=1 but not self-adjoint operator.

11
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1 2 : i
(2) LetA{ ) J; then A is (K-N)*-quasinormal operator on ¢* where
k=2, N =1 but not skew-adjoint operator.

(3) Let H=/,(¢)={X=(X,Xy,Xg,me. ):i|xi|2<oo,xie¢,i:1,2 ..... Yand let U and
i=1

B the unilateral and the bilateral shift operators that are defined by:-
U (X, Xg 1) = (0, X, Xy 100.) (X, Xy ,0.) €4, (€)

and B(x,, X, ,...) = (X,, Xg,...) V(X Xy...) € £, (€)

Then U is (K-N)*-quasinormal operator where k =1,N = I but not normal.
(4) Let A:B _ﬂon Hilbert space ¢*> Then A is (K-N)*-quasinormal

operator, where k =2and N = but not unitary.
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