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Abstract 
  The typical contrast agents of ultrasound imaging composed of microbubbles 

of smaller than 7 µm in diameter this microbubbles consist of gas coated with 

a protein, lipid or polymer layer it is acting as very powerful scatterers. 

There are several models describe the dynamic behavior of these 

microbubbles under ultrasound filed, the  Lord Rayleigh’s model is the oldest 

one and the basis for all other models, this model was modified by plesset by 

added the  driving sound field, resulting in an equation called Rayleigh-Plesset 

equation which describes bubble oscillating due to the driving sound field in 

an inviscid and incompressible fluid of constant density, RP model is a second 

order nonlinear ODE, The RP equation may be modified  by Noltingk, 

Neppiras  and   Poritsky Whose added  the effects of the surrounding field , 

this led to an equation called the RPNNP equation which is considered the the 

first step to construct a shelled bubble model. Later researchs Take into 

account the liquid compressibility effect on the bubble dynamics, the major 

developments occurred in this area  by Keller and Miksis. The microbubbles 

which used  in  such  contrast  agents  are  normally  stabilized  by a  thin  

shell ,the stiffness and viscosity of this thin shell add a  another foctors to the 

acoustical behavior of  the bubble, several models exist for the encapsulating 

shell, the common models of encapsulated bubble are Hoff model and 

Marmottant Model, these models are an extension of the RP equation. 
  Understanding the behavior of the microbubbles under ultrasound filed gives 

us a good tool to predict it’s dynamic motion, which help in designing a new 

and good contrast agent. In this article we review the linear and non-linear 

behavior of the microbubbles and its mathematical models  
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 توصيف النماذج الرياضية لاوساط التباين للموجات فوق الصوتية: استعراض
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 الخلاصة:

لتباين النموذجيه المستخدمه في مجال التصوير بالموجات فوق الصوتيه تتألف من فقاعات اوساط ا   
وهي مكونة من غاز ومغلفه بقشره بروتينيه ، دهنيه او من  µm 7مايكرويه ذات اقطار اقل من 

تي هناك العديد من النماذج الرياضيه ال . البوليمر، تلك الفقاعات توصف بانها ذات استطاره قويه جدا  
تصف السلوك الديناميكي لتلك الفقاعات المايكرويه تحت تاثير الموجات فوق الصوتيه ، يعتبر نموذج 

Lord Rayleigh  ل بوقد تم تعديله من ق الاخرى نماذجسا  لكل الالاهو اقدم نموذج وPlesset 
هي   RPاو  Rayleigh-Plessetالذي اضاف اليه تاثير المجال الصوتي فنتج عنه معادله تسمى 

تهتز بتاثير مجال صوتي في سائل عديم  ةتصف فقاع معادله تفاضلية غير خطيه من الدرجه الثانية 
 ،Noltingkمن قبل كل من  ل هذا النموذجيافه ثابتة، تم تعدغاط ذا كثضاللزوجه وغير قابل للان

Neppirasو Poritsky  الذين اضافوا تاثير المجال المحيط بالفقاعه وادى ذلك الى معادله تسمى
RPNNP  والتي تعتبر الخطوه الاولى لبناء نموذج لفقاعه ذات قشرة، بحوث لاحقه اخذت بالاعتبار

ن ناميكية الفقاعة ، والتطور الكبير الذي احدث في هذا المجال كان مديتاثير انضغاطية السائل على 
الفقاعات المايكروية المستخدمة في اوساط التباين للموجات فوق الصوتية  .Keller و Miksisقبل 

طه قشرة رقيقة، الصلابة واللزوجة لهذه القشرة تضيف عوامل اخرى الى ساتكون عادة محفوظه بو 
 نلفقاعة، وهناك عدة نماذج تصف هذه القشرة . ان اكثر نموذجين انتشارا  يصفاالديناميكي لالسلوك 

ان فهم  .RPوهما امتداد لنموذج  Marmottantو نموذج  Hoffالفقاعات المغلفه بقشره هما نموذج 
سلوك هذه الفقاعات تحت تاثير الموجات فوق الصوتيه يعطينا وسيله جيده للتنبؤ لحركتها الديناميكيه 

 ة عالية. ءي تساعدنا على تصميم اوساط تباين جديدة وذات كفاوالت
 الرياضية النماذجفي هذا البحث نستعرض السلوك الخطي وغير الخطي للفقاعات المايكرويه واهم 

 .التي تصف ذلك السلوك
 

Key words: contrast agent, microbubbles, ultrasound, bubble vibration 
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Introduction  

  Ultrasound represents the safest, fastest and least expensive method of 

several medical diagnosis imaging techniques such as magnetic resonance 

imaging or x- ray, however, image quality of ultrasound is often inferior, 

therefore  methods for improving image contrast are  highly desirable, one of 

this methods which has growing  interest is the contrast agents, usually typical 

contrast agents of ultrasound imaging composed of microbubbles of smaller 

than 7 µm in diameter, because it have to pass through capillaries with 

diameter of about 7µm (through the pulmonary circulation) so this enable 

them to cross capillary beds, (the diameter of red blood cell is about 7 µm ), 

and giving an upper limit for the particle diameter that is much smaller than 

the wave length of the sound, these microbubbles if administered 

intravenously, flood the blood pool and remain within the vascular 

compartment, it is acting as very powerful scatterers (as secondary sources of 

ultrasound waves) [1]. 

  Generally, the microbubbles consist of gas coated with a protein, Lipid or 

Polymer layer [2], protect these bubbles from dissolving in the blood or to 

coalesce to form large bubbles, when a microbubble subjected to ultrasound it 

will start to oscillate with the same frequency of the ultrasound waves, but at 

higher ultrasound intensity the oscillations of the microbubbles become more, 

extreme and nonlinear behavior will start to appear. 

  There are several models describe the dynamic behavior of the microbubbles,  

The model which was derived by Lord Rayleigh in 1917 is the oldest, which 

describes an empty space in the liquid this model was derived from the 

Navier-Stokes equation for a spherically symmetric bubble located in an 

incompressible flow liquid  with constant external pressure, this modle 

provides the theoretical basis in develop the models of nonlinear bubble 

vibration. In the early 1990s, De Jouge et al. was published studies of scatter 

and transmission of ultrasound from contrast agents [5,6], Fox, Herz field, 

Medwin had based the theoretical models on bubble models [7,8], this model 

was extended by Holm et al. in 1994 to give more complete model for the 

attenuation and scatter from contrast agents in tissue [9], the experimental 

incorporation of  De Jong and Hoff [10] determined elasticity and friction 

parameters into the Rayleigh–Plesset model. all  these models are  non-linear, 

therefore the solutions  must be obtained by using the linear approximations 

for small amplitude oscillations or by using numerical methods, in this article 

we will address only to the solutions of  the linear approximations.   
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Interactions between ultrasound and microbubbles 

  Compared to other particles, gas bubbles in liquids are unique as they are 

highly efficient scatterers of sound, even if the bubble diameter is much 

smaller than the wavelength of the sound [3]. Because of this strong acoustic 

scatter, bubbles have many important acoustics applications, one of these 

applications is the medical ultrasound contrast agents [4], this unique feature 

results from the high compressibility of the gas in the bubble, This make the 

microbubbles markedly expand and contract while tissue molecules are 

moving only a few angstroms as ultrasound compression and rarefaction wave 

passes [3]. 

The change in bubble size is determined by the acoustic power applied, but at 

diagnostic levels they may halve and double in size [4]. Bubble size affect the 

natural oscillation frequency (resonance frequency),when the frequency of 

incident ultrasound waves reach the resonance frequency of the bubbles, they 

become extremely efficient at translating the ultrasound energy from 

propagating waves into scattered signals. 

  The non-linear behavior at higher acoustic pressure is another factor that 

affect the microbubble response, this due to the fact that can expand more 

easily than they contract, because the increasing pressure at microbubble with 

smaller volumes opposes further compression due to their stiffness, while less 

energy is needed for further expansion, In another words the microbubbles 

diameter change in asymtrical mode about the radius at equilibrium, in the 

rarefaction phase, the increase in diameter is larger than decrease in diameter 

during compression phase. 

The insolating waves is returned from the bubble as distorted version, this is 

known as non-linear response, Bubble oscillations become more complex at 

higher acoustic pressure, this results in diverging from simple spherical  

change and further increasing the non-linear properties of the scattered 

ultrasound waves. 

  For diagnostic ultrasound imaging, contrast agent must composed of particles 

(microbubble) that are much smaller in size than the ultrasound wavelength 

but though are highly powerful ultrasound scatters, The ultrasound signals 

scattered from microbubbles have a characteristic features that distinguish it 

from ultrasound signals that scattered from tissue, Understanding of these 

effects can help in optimizing the equipment of diagnostic ultrasound and also 

help the manufacturers of contrast agents to design the agents which provide 

as best information as possible. 
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The bubble vibration and its mathematical models 

  The volume pulsations of the microbubbles in a contrast agent depend on the 

external oscillating pressure field (Ultrasound waves) and these microbubbles 

respond in linear or non-linear mode, the radius of the microbubble change 

linearly in relation with the amplitude of the applied ultrasound wave at low 

acoustic pressure which result in linear pulsation of microbubble, but at high 

acoustic pressures, microbubbles pulsation become non-linear, in principle, 

expansion of bubbles is unlimited unlike the compressibility of the bubble. 

At small excitation levels, the bubble wall displacement can be compared to 

the displacement of a simple one dimensiond mass spring oscillator [6] (figuer 

1).  

In this case the oscillator is defined by its mass, restoring force, damping, and 

applied force. This leads to the equation of motion of the bubble, which is 

expressed as: 

𝑚𝑥̈ + 𝛽𝑥̇ + 𝑆 𝑥 = 𝐹𝑑𝑟𝑖𝑣                         (1) 

  

where 𝑚 is the mass of the bubble–liquid system, 𝛽 is the mechanical 

resistance related to the dissipation, Ѕ is the stiffness of the system, 𝐹𝑑𝑟𝑖𝑣 (t) is 

the driving force, and 𝑥 (t) is the radial displacement of the bubble wall 

relative to the initial radius 𝑅₀, where 𝑥 (t) =𝑅(t) - 𝑅₀. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure.1  Analogy between a gas bubble and mechanical oscillators [4]. 
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According to this approximayion ,the motion of the bubble surface 

(oscillation) almost like the simple harmonic oscillation and the resonance 

frequency 𝑓𝑟 of the bubble for an undamped oscillation is given by: 

𝑓𝑟 =
1

2𝛱
√

Ѕ

𝑚
                                         (2) 

  The stiffness of the gas bubbles in a liquid  is that of the enclosed volume of 

gas that acts like a spring when the bubble is irritated from its equilibrium 

radius. 

The mass of the liquid surrounding the bubble that  oscillates with it, result in 

an inertia. Various  frictional mechanisms will  damp out the oscillations of 

the bubble, the damping 𝛽 in Equation 1 is determined by three important 

parameters responsible for the damping:  First, reradiation damping: In the 

reradiation damping (resistence), the bubble can act as a secondary source, 

reradiates the energy of ultrasound, this lead to decrease  the energy of the 

system. Second, damping due to the viscosity of surroundingLiquid: The 

viscosity of the surrounding fluid, which moves with the bubble wall,also can 

lead to energy dispersion. Third, thermal damping: the temperature that 

generated from the expansion and compression of the bubble, which results in 

a net flow of energy outwards into the surrounding medium, this is  another 

cause to decrease  the energy of the system. 

The damping coefficients depend on the frequency of the acoustic field and the 

bubble size. At  low  frequencies,  the damping from  liquid viscosity 

dominates  for  the smallest bubbles, while  thermal damping dominates  for  

the  larger bubbles, at  high  frequencies the radiation damping takes over and 

becomes the dominating damping mechanism  for  all  bubble sizes[4].The 

damping coefficients are in the order of 0.1 for bubbles with a diameter 

between 1 and 10 µm [11]. 

  The basic mathematical models known applied to contrast agents were 

originally developed for modelling cavitation bubbles which observed on 

ship’s propellers [4], Lord Rayleigh pioneered research on the motion of 

bubbles by studying inertial cavitation, who studied the collapse of vapor-

filled cavities around ship propellers,  nearly 60 years after the earliest studies 

done by Besant on the collapse and growth of a spherical cavity within a 

continuous liquid medium [12],the model which was derived by Lord 

Rayleigh is dating from 1917 (equation 3) known as Rayleigh model, all  

mathmatical models of nonlinear bubble vibration are adopted this model as 

its basis [13].  
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Figure. 2   Schematic diagram showing the bubble with radius R(t) fluid pressure at the 

bubble wall pL, the fluid pressure far from the bubble 𝑃∞, the fluid density ρ  and the gas 

pressure 𝑃𝐺 

 

  It describes an empty space in the water, influenced by a constant external 

pressure. Rayleigh’s  assumption of an empty space led to the name cavity still 

used, the Rayleigh equation was derived from the Navier-Stokes equation for 

a spherically symmetric bubble located in an incompressible flow liquid  with 

constant external pressure[14].  

 

𝜌𝑙 [𝑅𝑅̈ +
3

2
𝑅̇2] = 𝑃𝑙 −  𝑃∞                                       (3) 

Here  the radius of  bobble is a function changing with the time, this  relates  

the  radius 𝑅 (t),  velocity  𝑅̇ (t),  acceleration of  the  bubble surface 𝑅̈ (t) (the  

left  side of equation (3)  represents  inertia, the  right  side   represents  

restoring  stiffness  forces), 𝜌𝑙 is the fluid density, 𝑃𝑙  is the fluid pressuer at 

the bubble surface and   𝑃∞ is the pressuer far from the bubble as shown in 

figure 2. 

  A driving acoustic field  was  included  in  1949 by  Plesset   he  lett  the 

background pressure 𝑃∞  vary with  time as 𝑃∞ = 𝑃₀ + 𝑃𝑖(𝑡).  Here, 𝑃₀  is  the 

static background pressure and 𝑃𝑖(𝑡) is  the driving sound field (𝑃𝑖(𝑡) =

𝐴 sin 2𝛱𝑓𝑡) [14].  

 

𝜌𝑙 [𝑅𝑅̈ +
3

2
𝑅̇2] = 𝑃𝑙(𝑡) − 𝑃₀ − 𝑃𝑖(𝑡)                          (4) 

 
  This is  commonly called the Rayleigh-Plesset equation for  the oscillating 

bubble, It is based on the work by Lord Rayleigh [13]. The Rayleigh-Plesset 

https://en.wikipedia.org/wiki/Navier-Stokes_equation
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equation is a second order nonlinear ODE, it is models a bubble oscillating in 

an inviscid and incompressible fluid of constant density 𝜌𝑙.  

  The  surface tension,  and liquid viscosity of the surrounding field that shows 

in (Figure 3) are not  included  in  (equations 4). Noltingk, Neppiras  and   

Poritsky  had added  the effects of the surrounding field to the expression in 

equation (4), as  this expansion  describes the motion of the surrounding field 

only, with the pressure 𝑷𝒍(𝒕) at the bubble surface as a  boundary condition 

[15], they combining the Rayleigh–Plesset equation with the effects of the 

surrounding field, they obtained the following expression[14]. 

 

𝜌𝑙 [𝑅𝑅̈ +
3

2
𝑅̇2] = 𝑃𝑮(𝒕) − 𝑃₀ − 𝑃𝑖(𝑡) − (

2𝜎

𝑅
+

4µ𝑅̇

𝑅
)        (5) 

 

The effects  of the  gas  inside  the bubble are not  included  in  (equation 5). 

The bubble oscillations change the state of the gas within the bubble, a model 

of the gas is therefore required. 

 

 

 

 

 

 

 

 
 

Figure 3:  Diagram showing the forces on the bubble surface. 

  The polytropic law assumes the gas pressure to be uniform within the bubble. 

This is equivalent to saying that the velocity of the bubble surface is smaller 

than the speed of sound in  the gas. At  large radial oscillation amplitudes the 

surface velocity  can  reach  very  high  velocities  during  the  compressional  

phase  of  the oscillation, violating  this  assumption, these high velocities will  

occur  in  a  very small fraction of the oscillation cycle.  In the following, the 

gas is  always assumed to follow  the polytropic  law. 

 

𝑝𝐺(𝑡) 𝑉𝛾(𝑡) = constant                                               (6) 

 

  Where 𝑝𝐺(𝑡) is the gas pressur, 𝑉(𝑡) is the time dependent volume and 𝛾 is 

called the polytropic exponent (for adiabatic processes the 𝛾 is the ratio of 

specific heats, for air  𝛾  = 1.4, If the process is isothermal  𝛾 = 1) [4]. 



JOURNAL OF COLLEGE OF EDUCATION….. 2016…….NO.1 

125 

The gas pressure may be determined by assuming the bubble is initially in 

equilibrium at time (𝑡0). 

This relating the gas pressure to the undisturbed fluid pressure far from the 

bubble at time (t) = 0  

So,the pressure inside the bubble at time (𝑡) will be 

 

𝑝𝐺(t) 𝑅3𝛾 = 𝑝𝐺 (0) 𝑅₀
3𝛾                                                 (7) 

 

  Initially the bubble was in equilibrium, so that the initially gas pressure in 

sied the bubble have to be the static background pressure P₀ adding to the 

surface tension effect as in figure 3   i.e. 

 

  𝑃𝑮(𝟎) = 𝑃0 +
2𝜎

𝑅0
                                                              (8) 

   

𝑝𝐺(t) 𝑅3𝛾 = (𝑃0 +
2𝜎

𝑅0
) 𝑅₀

3𝛾                                                 (9) 

 

 

𝑝𝐺(t) = (𝑃0 +
2𝜎

𝑅0
) [

𝑅₀

𝑅
]

3𝛾
                                                       (10) 

 

  By adding the polytropic gas law with the boundary condition to (equation 

5),  result in the following expression which describes the motion of an ideal 

gas bubble. 

𝜌𝑙 [𝑅𝑅̈ +
3

2
𝑅̇2] = [𝑃₀ +

2𝜎

𝑅₀
 ] [

𝑅₀

𝑅
]

3𝛾
−

2𝜎

𝑅
−

4µ𝑅̇

𝑅
− 𝑃₀ − 𝑃𝑖(𝑡)              (11) 

  The left-hand side of this ODE for the bubble radius R(t) consists of 

dynamical pressure terms (inertia) already known to Rayleigh (where 𝑅 , 𝑅̇ 

and 𝑅̈ represent the radius, velocity and acceleration of the bubble), ( ρl ) is 

the density of the liquid. The right-hand side represents  restoring  stiffness  

and  damping  viscous forces which comes from the surface tension at the 

bubble (𝜎)and the liquid viscosity (µ), 𝑃₀ is the constant ambient pressure and 

𝑃𝑖(𝑡) the ultrasound driving, modelled as  (𝑃𝑖(𝑡) = 𝐴 𝑐𝑜𝑠 𝑤𝑡 ) with a fixed 

frequency, and  𝜸 is the ratio of spesific heats (for air 𝜸 =1.4 , if the process is 

isothermal 𝜸 =1)  

  This expression commonly called Rayleigh–Plesset–Noltingk–Neppiras–

Poritsky (RPNNP) equation [16], which is describes the unshelled  bubble 

oscillating in a viscid and incompressible fluid with fluid constant density ρl. 
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  A limiting condition for arriving at a demarcation between compressible flow 

and incompressible flow is based on the comparison of flow velocity with the 

velocity of an infinitesimal pressure pulse in the fluid medium (i.e. velocity of 

sound in the medium). The flow consider incompressible if the ratio of the 

flow velocity to velocity of the sound in the medium (defined as Mack 

number) is less than 0.3, if the ratio is greater than 0.3 then the flow is 

consider as a compressible flow [17],  In other words the compressibility 

effect of  surrounding field comes from the hiegh  velocity of the bubble wall 

Ṙ which coused by the driving sound field, and Equation (11)  did not account 

for liquid compressibility, which becomes a dominant factor as the bubble 

wall velocity Ṙ becomes greater than 0.3 of the sonic velocity in the medium 

[17]. 

  Later researchs in this area addressed this fact of bubble dynamics, Gilmore  

proposed the first model for cavitation bubble dynamics accounting for liquid 

compressibility effect )The Gilmore model is suitable for large amplitude 

bubble oscillations with high Mach numbers([18]. during the subsequent years 

major developments occurred in this area by Keller and Kolodoner [19], more 

precise forms of models for radial motion of cavitation bubbles were resulted 

by Keller and Miksis [20] and Prosperetti and Lezzi [21]. 

  Two common models for cavitation bubble dynamics in a compressible fluid 

among scientific community in bubble dynamics are: 

 

1.  Keller and Miksis equation [20,22], which considers a compressible liquid. 

 

(1 −
𝑅̇

𝑐
) 𝑅𝑅̈ + (1 −

𝑅̇

3𝑐
)

3

2
𝑅̇2 =

1

𝜌𝑙
(1 +

𝑅̇

𝑐
) (𝑃𝐺(𝑡) − 𝑃₀ − 𝑃𝑖(𝑡)) +

𝑅̇

𝜌𝑙𝑐
𝑃̇𝐺(𝑡)  −

4µ𝑅̇

𝜌𝑙𝑅
−

2𝜎

𝜌𝑙𝑅
     

(12) 

 

  The factors of  type (1 ∓
Ṙ

c
) in this model change the inertia due  to the 

compressibility of the liquid, but can cause the  solution  to become  unstable  

for  high Mach-numbers.  this model  is  only meaningful  for  acoustic Mach-

numbers much smaller  than one [4]. 

  As the bubble oscillates, it radiates acoustic energy which result in oscillation 

damping, The term which contians  𝑷̇𝑮(𝒕) can predict  acoustic radiation 

damping of the bubble and this term gives an important  improvement of the 

this model, where c is the speed of sound in the liquid  [23]. 

2. Another important variant of the bubble dynamics equation is the model 

poroposed by Lofstedt et al. and Barber et al. [24,25,26], in this model all 



JOURNAL OF COLLEGE OF EDUCATION….. 2016…….NO.1 

127 

prefactor parentheses  containing  Ṙ/c in the Keller and Miksis model  are 

deleted. This leads to the equation: 

 

𝑅𝑅̈ +
3

2
𝑅̇2 =

𝑃𝑮(𝒕)−𝑃₀−𝑃𝒊(𝒕)

ρl
+

𝑅̇

𝜌𝑙c
𝑷̇𝑮(𝒕) −

4µ𝑅̇

𝜌𝑙𝑅
−

2𝜎

𝜌𝑙𝑅
                  (13) 

 
It is recommended to express 𝑃𝑙 instead of  𝑃𝐺  in the equation 13,  where 𝑃𝑙  
is the pressure  at  the bubble surface. 

 

Where 

𝑃𝒍(𝒕) = 𝑃𝑮(𝒕) −
4µ𝑅̇

𝑅
−

2𝜎

𝑅
                                                           (14) 

 

So we can rewrite equation 14 as follow 

 

𝑅𝑅̈ +
3

2
𝑅̇2 =

𝑃𝒍(𝒕)−𝑃₀−𝑃𝒊(𝒕)

𝜌𝑙
+

𝑅̇

𝜌𝑙c
𝑃̇𝐺(𝑡)                                          (15) 

 

  This second order nonlinear ODE  describes  the unshelled bubble oscillating 

in a viscid and compressible fluid of constant density ρl and with acoustic 

radiation damping, this expression commonly called (modified Rayleigh-

Plesset equation) 

 

Coated bubble vibration 

The  gas  bubbles  used  in  ultrasound  contrast  agents  are  normally  

stabilized  by a  thin  shell.  The shell  can  influence  the mechanical 

properties of  the bubble by increasing its  stiffness  and by  introducing added 

viscous damping.The stiffness and viscosity of the shell of the encapsulated 

bubble add a  another foctors to the acoustical behavior of  the bubble, the 

shell stiffness causes an increase in resonance frequency of the bubble and the 

viscosity  of the shell causes an increase in the bubble damping [4].  
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Figure 4:   Definition of the radial stress and pressures on the bubble shell,Where 𝑻𝟏and 

𝑻𝟐  are the  stresses  at the inner and outer surfaces of the shell,𝒅𝒔 = 𝒅𝒔(𝒕) is  the  

instantaneous shell  thickness, The shell  is  thin compared  to the bubble  radius (𝒅𝒔 << 

R) and it may vary as the bubble radius R = R(t) oscillates, The outer shell  radius  is 

𝑹 = 𝑹𝒐𝒖𝒕𝒆𝒓 (𝒕), The inner shell  radius 𝑹𝒊𝒏𝒏𝒆𝒓 is  expressed as  𝑹𝒊𝒏𝒏𝒆𝒓 =  𝑹 − 𝒅𝒔 [4]. 

 

  In other words for coated  bubble the  tension  across  the thin shell  due  to 

elasticity  and viscosity (the difference in radial stress between the inner and 

outer shell surface) gives the pressure  difference  across  the  shell  , So a new 

foctors will add to  the pressure 𝑃𝑙(𝑡)  at the surface of the bubble in  equations 

(14) and this pressure can be found by calculate the difference  in  radial  

stress  across  the  shell (𝑇2 − 𝑇1) due  to elastic  and viscous forces  in  the 

shell, and the gas pressure  inside the bubble   PG(t) which calculated from  a 

polytropic gas model. 

The first model of the encapsulated microbubbles were modeled by De Jong et 

al. [5], the experimental incorporation of  De Jong and Hoff [10] determined 

elasticity and friction parameters into the Rayleigh–Plesset model, Linear 

visco-elastic constitutive equations used by Church [27] to describe the shell, 

since then many models have been determined to investigate the effect of the 

shell on the bubble’s vibration, e.g [28,29]. 

  The pressures  and  stresses  are  illustrated  in  figure  4, the  boundary 

conditions require continuity in radial stress at the shell-liquid and shell-gas 

interfaces. 
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These boundary conditions are: 

 

 

𝑇𝑙 = 𝑇2       Continuity at outer shell  surface. 

                                                                                                (16) 

𝑝𝐺 = −𝑇1   Continuity at inner shell  surface. 

 

 

The expressions for  the stresses  involved are: 

 

               𝑇𝑙 = −𝑝𝑙 −
4µ𝑙𝑅̇

𝑅
    Stress at the bubble-liquid  surface. 

 

𝑇2 − 𝑇1      Stress difference across  the shell. 

 

         𝑃𝐺 = 𝑃₀ ([
𝑅₀

𝑅
]

3𝛾
)       Gas pressure inside the bubbel  

 

These equations are  combined with  the  boundary  conditions  (16),  giving  

an  

expression for  the pressure 𝑃𝒍(𝒕) at  the bubble surface. 

 

            𝑝𝑙 = 𝑃₀ ([
𝑅₀

𝑅
]

3𝛾
) −

4µ𝑙𝑅̇

𝑅
−  (𝑇2 − 𝑇1)                        ( 17) 

 

  Where µ𝑙 is the viscosity of fluid. The effect  of surface  tension has not  

been  included  here, where  it is  assumed  that the  shell  reduces  the  surface  

tensions  of both  the  gas-shell  and  the  shell-liquid interfaces,  so  that  these  

can  be  neglected [4].  

  The common models  for  tension  across  the thin shell (𝑇2 − 𝑇1)  due  to 

elasticity  and viscosity  are  summarized  in  the following  four  different 

models, the thin shell in these models is  described  as  a  visco-elastic  solid 

(using  the Lame coefficients  and shear viscosity) [4] . 

 

 Linear material - nonlinear geometry 

 

𝑇2 − 𝑇1 = 12
𝑑𝑠𝑒

𝑅₀
(

1

1+𝑥
)

4
(𝐺𝑠𝑥 + µ𝑠𝑥̇)                        (18) 
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  This model is nonlinear relation, the nonlinearity  in  this  equation  comes  

from  the  geometry of the  system (in other words from  (
1

1+𝑥
)

4
),  assuming  

that  the material  properties  stay  linear,  the  validity  of this combination of 

linear material and nonlinear geometry  is  questionable [4,30]. 

 Fully  linearized model 

 

𝑇2 − 𝑇1 = 12
𝑑𝑠𝑒

𝑅₀
(𝐺𝑠𝑥 + µ𝑠𝑥̇)                                      (19) 

 

  This  model is linear relation  and it is  appealing as  a first order model.  It 

predicts that the shell is equally stiff no matter how much it is expanded or 

contracted.  This  

models gives  no  softening of the shell  as  it expands,  and it  is  suspected  to 

overestimate the shell  stiffness  in expansion [4]. 

 

 Intermediate model 

 

𝑇2 − 𝑇1 = 12
𝑑𝑠𝑒

𝑅₀
(

1

1+𝑥
)

2
(𝐺𝑠𝑥 + µ𝑠𝑥̇)                         (20) 

  This  model is  a  compromise  between  the  two  assumptions, the  factor 

(
1

1+x
)

2
 adds  some  softening  to  the  shell  as  it  expands,  but not  so  much  

as  in equation (20) [4].  

 

 Exponential shell 

 

𝑇2 − 𝑇1 = 12
𝑑𝑠𝑒

𝑅₀
(𝐺𝑠(1 − 𝑒−𝑥

𝑥0⁄ )𝑥 + µ𝑠 𝑒−𝑥
𝑥1⁄   𝑥̇)               (21) 

 

  This  model is an exponential relation between pressure and radial strain, 

which has  been  found  successful  in  describing  the elasticity of blood  

vessel walls,It was  suggested  used  on  the  shell  of contrast  agents  by  

Angelsen et al. [31].  This model is appealing as it gives softening in shell 

expansion, in addition, it gives a monotonic decrease in pressure as the shell is 

expanded. 

Where  µ𝑠 is shear viscosity in the shell (Its an equivalent viscosity of the shell 

and gas which represents both visous and thermal losses [32]) , 𝐺𝑠 is shear 

modulus of the shell,  𝑑𝑠𝑒  is the shell thickness at equilibrium, 𝑅₀ is the 

bubble  radius at equilibrium, 𝑥 =
𝑅−𝑅₀

𝑅₀
  , 𝑥̇ =

𝑅̇

𝑅₀
 , 𝑥0  and 𝑥1 are two constants 
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respectively 
1

8
  , 

1

4
 [32], in the equations (18 to 21 ) the terms which contain 𝐺𝑠  

represent the shell stiffness and the terms which contain µ𝑠 represent the 

bubble damping due the viscosity  of the shell [4]. 

  By choosing and  the Exponential shell model (equation (21)) and 

compensation with the equation (17) which describes the pressure 𝑃𝑙(𝑡) at  the 

shell bubble surface, substituting the  result into equation (15), result in the 

folloing expration : 

 

𝑅𝑅̈ +
3

2
𝑅̇2 =

𝑃0([
𝑅0
𝑅

]
3𝛾

−1)−𝑃𝒊(𝒕)

ρl

 −
4µ𝑙𝑅̇

ρl𝑅
−  

1

𝜌𝑙
[12

𝑑𝑠𝑒

𝑅𝑒
(𝐺𝑠 (1 − 𝑒

−
𝑅−𝑅₀

𝑥0𝑅₀ )
𝑅−𝑅₀

𝑅₀
+

µ𝑠

𝑅̇

𝑅₀
 𝑒

−
𝑅−𝑅₀

𝑥1𝑅₀   )] +
R

𝜌𝑙c
𝑃̇𝐺(𝑡)                                             (22) 

 

  This model is usually called  Hoff's  model, Hoff et al. in 2000 derives their 

model from Church's model 1995 which adopted on the modified Rayleigh-

Plesset model,and due to the experimental incorporation of  De Jong and Hoff [4]. 

  Hoff et al. model depend on viscosity and shear modulus of the shell 

substance, the shear modulus and viscosity of the shell are in general 

frequency dependent, but in this modle it is assumed that they are constant for 

the frequency range of the medical  ultrasound imaging. 

  Another approach takes into account the physical properties of the  

monolayer of the bubble's shell, sach model was suggested  by Marmottant et 

al. equation  (23) [34] . 

𝜌𝑙 [𝑅𝑅̈ +
3

2
𝑅̇2] = [𝑃₀ +

2𝜎(𝑅₀)

𝑅₀
] [

𝑅₀

𝑅
]

3𝛾
[1 −

3𝛾

𝑐
𝑅̇] −

2𝜎(𝑅)

𝑅
−

4µ𝑙𝑅̇

𝑅
−

4µ𝑠𝑅̇

𝑅2
− 𝑃₀ − 𝑃(𝑡)     (23) 

 

  Marmottant model is identical to a unshelled bubble model (equation 15), 

except from the shell viscosity term 
4µsṘ

R2
 and the effective surface tension  

term  2σ(R) the characteristic of this model, is a variable effective surface 

tension, the effective surface tension at the bubble wall varies along three 

linear regimes and these regimes depend on the bubble area, in other words, 

during the oscillation, the dynamical surface tension will vary, since it is a 

function of the bubble area, therefore the effective surface tension write as 

σ(R) to emphasize this dependence, so  the elasticity of the shell is vary with 

the bubble radius [33] .Marmottant’s model only needs three parameters to 

describe the effective surface tension: the buckling area of the bubble  

𝐴buckling  below which the surface buckles, an elastic compression modulus  
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𝑌  that gives the slope of the elastic regime and a critical break-up 

tension  𝜎break−up , which predicts for which bubble area the coating ruptures 

(figure 5), with the result that the effective surface tension saturates at  𝜎𝐿𝑖𝑞𝑢𝑖𝑑  

[33] . These three regimes can be expressed as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 5:  Model for the dynamic surface tension of a monolayer coated 

bubble (continuous line). The shell has a fixed number of lipid molecules, 

which corresponds to a monolayer at equilibrium (when area is 𝑨𝟎). The 

effective surface tension saturates to the liquid value 𝝈(𝑳𝒊𝒒𝒖𝒊𝒅) (broken line) 

after the break-up effective surface tension has been reached  

(𝝈(𝒃𝒓𝒆𝒂𝒌−𝒖𝒑) >  𝝈(𝑳𝒊𝒒𝒖𝒊𝒅))[34] 

 

 

                        𝑧𝑒𝑟𝑜  𝑖𝑓 𝑅 ≤ 𝑅𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 

   

    𝜎(𝑅) =          𝑌 (
𝑅2

𝑅𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔
2 − 1)  𝑖𝑓 𝑅𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔  ≤  𝑅 ≤ 𝑅𝑏𝑟𝑒𝑎𝑘𝑢𝑝            (24) 

 

                          𝜎(𝐿𝑖𝑞𝑢𝑖𝑑) 𝑖𝑓 𝑅 ≥ 𝑅ruptured 
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Marmottant’s model extends the oscillation to unbounded, so its suitable to 

describe the coated bubble osculation with large amplitudes 

  In general the aim of using the contrast agent is enhancement the ultrasound 

diagnostic imaging, to reach this goal the transducer should operate at the 

resonance frequency of the microbubbles which are composing the contrast 

agent, This permits to get the best echo at the fundamental mode and at the 

second-harmonic mode, so knowledge of resonant frequencies of contrast 

microbubbles is important for the optimization of ultrasound contrast imaging 

and therapeutic techniques, estimates the resonance frequencies of contrast 

microbubbles  for the linear oscillation regime is useful  and best method, 

even though the resonant frequency of the bubble practically influenced by the 

amplitude of driving sound which may causes   nonlinear behavior [36], to get 

the resonant frequencies of the microbubbles we linearize the nonlinear 

ordinary differential equation of the microbubble oscillation, this lead to the 

general linear ODE form like equation (1) 

 

𝑚𝑥̈ + 𝛽𝑥̇ + 𝑆 𝑥 = −4𝛱𝑅₀ 𝑃𝒊(𝒕) 

 

Where (−4ΠR₀ 
2  Pi(t)) is the driving force due to the driving acoustic pressure 𝑃𝒊(𝒕). 

 

Linearization 

1- Hoff’s model  

  To make this linearisation assume that the applied pressure 𝑃𝒊(𝒕) has low 

amplitude and causes the radius displacement of the bubble wall relative to the 

initial radius R₀, according to x(t) =  R(t) − R₀  ⇒  R(t) = R₀(1 + x(t)) where 

x << 1 and retain only first order terms in x, Recall equation (10) and 

substitute these assumptions in it.  

  

𝑃𝑮(𝒕) = 𝑃₀ [
𝑅₀

𝑅
]

3𝛾
= 𝑃₀ ([

1

1+𝑥
]

3𝛾
)                                     (25) 

 

(The effect  of surface  tension has not  been  included  here.  It is  assumed  

that the  shell  reduces  the  surface  tensions  of both  the  gas-shell  and  the  

shell-liquid interfaces,  so  that  these  can  be  neglected [4].) 

By using the binomial theorem to simplified the pressure term in equatoin (25) 
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                     [
1

1+𝑥
]

3𝛾
≈  (1 − 3𝛾𝑥)  

 

Which result in                                                                                         (26) 

                        𝑃𝐺(𝑅. 𝑡) ≈  𝑃₀(1 − 3𝛾𝑥) 

 

                     𝑃̇𝐺(𝑅. 𝑡) ≈ −3𝛾𝑃₀𝑥̇  

 

 

substitute equations (26) in equation (22)  

 

 

𝑅₀
2(1 + 𝑥)𝑥̈ +

3

2
𝑥̇2 =  

𝑃₀(1−3𝛾𝑥)−𝑃₀−𝑃𝒊(𝒕)

𝜌𝑙
−  

3𝛾𝑃₀𝑅₀

𝜌𝑙𝑐
 𝑥̇ −

4µ

𝜌𝑙
𝑥̇ −  

1

𝜌𝑙
 [12

𝑑𝑠𝑒

𝑅₀
(𝐺𝑠(1 −

𝑒−𝑥
𝑥0⁄ )𝑥 + µ𝑠 𝑒−𝑥

𝑥1⁄   𝑥̇)]                                                                   (27) 

 

retaining only the linear terms in  x ,  and comper it with the generl linear 

ODE form (equation (1) )  

 

𝑥̈ +
3

𝜌𝑙𝑅₀
2

[
𝑃0𝛾𝑅₀

𝑐
+

4

3
µ𝑙 + 4

𝑑𝑠𝑒

𝑅₀
µ𝑠] 𝑥̇ +

3

𝜌𝑙𝑅₀
2

[𝑃0𝛾 + 4
𝑑𝑠𝑒

𝑅₀
𝐺𝑠]  𝑥 = −

𝑃𝒊(𝒕)

𝜌𝑙𝑅₀
2
         

(28) 

 
 

  This equation represent the  oscillation of the encapsulated bobble with linear 

acoustic radiation damping which have total damping :  

  

𝛽 =
3

𝜌𝑙𝑅₀
2

[
𝑃0𝛾𝑅₀

𝑐
+

4

3
µ

𝑙
+ 4

𝑑𝑠𝑒

𝑅₀
µ

𝑠
]                                               (29) 

Or      

                𝛽 = 𝛽𝑐 + 𝛽𝑙 + 𝛽𝑠                                                                    (30)          

 

   𝛽𝑐 =
3𝑃0𝛾

𝜌𝑙𝑐𝑅₀
  which represent the damping due to acoustic radiation 

    𝛽𝑙  =
4µ𝑙

𝜌𝑙𝑅₀
2
    which represent the damping due to liquid viscosity          (31) 

    𝛽𝑠  = 12
𝑑𝑠𝑒

𝜌𝑙𝑅₀
3
µ𝑠 which represent the damping due to shell viscosity 

 

And the resonant frequency will be as follow: 
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𝑓𝑟 =
1

2𝛱𝑅₀

√
3

𝜌
𝑙

[𝛾𝑃₀ + 4
𝑑𝑠𝑒

𝑅₀

𝐺𝑠]                                     (32) 

 

 

2-Marmottant’s model 

  For small vibration amplitudes, i.e. |𝑅 − 𝑅₀| ≪ 𝑅₀ the shell is in elastic state 

and the radius  of the bubble is in the regime of  𝑅𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔  ≤  𝑅 ≤ 𝑅𝑏𝑟𝑒𝑎𝑘𝑢𝑝 

Within this regime the surface tension is a linear function of the 𝑅₀
2.  

So  from equation (24)  the surface tension can be linearized around a constant 

value [37] as follow:  

 

𝜎(𝑅) = 𝑌 (
𝑅2

𝑅₀
2

− 1)   ≈ +2𝑌(
𝑅

𝑅₀
− 1)                                    (33) 

 

The effective surface tension  term  in equation (23) can be written as follow: 

 

−
2𝜎(𝑅)

𝑅
= −4𝑌 [

1

𝑅₀
−

1

𝑅
]                                                        (34) 

 

Where 𝑌 is the elastic compression modulus, for most shell used in contrast 

agent usualy 𝑌 ≫ 𝜎(𝑅₀) of the surrounding liquid therefor The term  
2𝜎(𝑅₀)

𝑅₀
 can 

be neglected, Substitute equation (34) into equation (23) lead to 

 

𝜌𝑙 [𝑅𝑅̈ +
3

2
𝑅̇2] = 𝑃₀ [

𝑅₀

𝑅
]

3𝛾
[1 −

3𝛾

𝑐
𝑅̇] − 4𝑌 [

1

𝑅₀
−

1

𝑅
] −

4µ𝑙𝑅̇

𝑅
−

4µ𝑠𝑅̇

𝑅2
− 𝑃₀ − 𝑃𝒊(𝒕)  (35) 

 

To linearize equation  (33) assume that the applied pressure  𝑃𝑖(𝑡)  has 

amplitude and causes the radius displacement of the bubble wall relative to the 

initial radius R₀, according to 𝑥(𝑡) =  𝑅(𝑡) − 𝑅₀  ⇒  𝑅(t) = 𝑅₀(1 + 𝑥(t)) 

where 𝑥 << 1 and retain only first order terms in 𝑥, Substitute these 

assumptions in (35) and using the binomial theorem as in equation (26), with 

retaining the linear terms in  x  only,  and comper the result  with the generl 

linear ODE form (equation (1) ), this leade to :  
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𝑥̈ +
1

𝜌𝑙
[

3𝛾𝑃0

𝑐𝑅₀
+

4µ𝑙

𝑅₀
2

+
4µ𝑠

𝑅₀
3

] 𝑥̇ +
1

𝜌𝑙𝑅₀
2

[3𝛾𝑃0 +
4𝑌

𝑅₀
]  𝑥 = −

𝑃𝒊(𝒕)

𝜌𝑙𝑅₀
2
        (36) 

 

This equation represent the  oscillation of the encapsulated bobble with linear 

acoustic radiation damping which have a damping : 

  

𝛽 =
1

𝜌𝑙
[

3𝛾𝑃0

𝑐𝑅₀
+

4µ𝑙

𝑅₀
2

+
4µ𝑠

𝑅₀
3

]                                                              (37) 

 

And resonant frequency 

 

𝑓𝑟 =
1

2𝛱𝑅₀
√

3𝛾𝑃₀

𝜌𝑙
+

4𝑌

𝑅₀𝜌𝑙
                                                                   (38) 

 
  For unshelld bubble, equations (32 & 38) are provide the resonant frequency 

as expected whereas the shear modulus 𝐺𝑠 in equation (32) and the elastic 

compression modulus 𝑌  in equation (38) are vanish, therefore the resonant 

frequency for such bubble is: 

 

𝑓𝑟 =
1

2𝛱𝑅₀
√

3𝛾𝑃₀

𝜌
𝑙

                                                             (39) 
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Conclusion  

  The microbubbles have strong acoustic scatter, the non-linear behavior at 

higher acoustic pressure is influential factor that affect the microbubble 

response. 

It is possible to predict the dynamic behavior for the motion of the bubble 

under the action of ultrasound, There are many models describe the dynamic 

behavior of the microbubbles, the bubble size, the rheological properties of the 

surrounding filed and of the shell of the bubble are the domain factors in any 

useful models.  

  When the bubble wall velocity Ṙ becomes greater than 0.3 of the sonic 

velocity in the medium, the compressibility of the liquid will change the 

inertia of the bubble, so this fact of  bubble dynamics should be take into 

consideration  

  The  gas  bubbles  used  in  ultrasound  contrast  agents  are  normally  

stabilized  by a  thin  shell, there are some models which nearly have different 

parameters  such as the different between Hoff model and Marmottant Model, 

one of them depend on viscosity and elasticity of the shell substance and the 

other depend on the viscosity and physical properties of  the monolayer 

microbubbles shell, despite that we can see clearly in equations (28 & 36) the 

stiffness and viscosity of the shell of the encapsulated bubble add a  another 

foctors to the acoustical behavior of  the bubble, the shell stiffness causes an 

increase in resonance frequency of the bubble and the viscosity  of the shell 

causes an increase in the bubble damping. 

  The results of many research proves that the results of Hoff’s model and 

Marmottant’s model are almost  identical together and there are a good 

matching  between  their   theoretical results and practical results for most 

contrast agents with  frequencies range of the medical ultrasound imaging [34, 

35]. 
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