Calculations of \square Delta Mixing Ratios for $\boldsymbol{\gamma}$-Transitions populated in ${ }_{43}^{97} T c_{54}$ Isotope using CST, \mathbf{a}_{2}-Ratio and LSF Methods

Iman T. Al-Alawy* Khalid S. Ibraheim*
Safra Mualaf Al-Shamari**
*College of Science/ Department of Physics/ Al-Mustansiriyah University **College of Education/ Department of Physics/ Al-Mustansiriyah University

Abstract

In this research the three methods CST, a_{2}-Ratio and LSF were used to calculate the γ-mixing ratios for γ-transition populated in ${ }_{43}^{97} \mathrm{Tc}_{54}$ energy levels from ${ }_{42}^{97} \mathrm{Mo}_{55}(\mathrm{p}, \mathrm{n} \gamma)_{43}^{97} \mathrm{Tc}_{54}$ reaction. our results show good agreement with experimental data. The disagreement between (LSF) and experimental data in the value of delta mixing ratios was for γ-transition of $895.4 \mathrm{KeV}\left(\frac{7^{+}}{2}-\frac{5^{+}}{2}\right)$ emitted from energy level 1219.9 KeV and 583.2 KeV $\left(\frac{7^{-}}{2}-\frac{5^{-}}{2}\right)$ emitted from energy level 1240.5 KeV was due to statistical approximations used for calculation of $\rho_{o}^{2}\left(I_{i}\right)$ values.

حساب نسب الخلط لانتقالات كاما في النظير ${ }^{97}$ باستخدام الطريقة (LSF) وطريقة نسبة ${ }_{2}$ وطريقة (CST)

```
د. خالد سلمان ابراهيم
    (أستاذ)
```

د. أيمان طارق العلوي (أستاد)

سفره معيلف الثمري **
(أستاذ مساعد)

* قسم الفيزياء/ كلية العلوم / الجامعة المستنصرية ** قسم الفيزياء/ كلية التربية/ الجامعة المستنصيرية

لقد تم في هذا البحث استخدام ثلاثة طرق نظرية (طريقة (CST) وطريقة نسبة ${ }_{2}$ وطريقة ${ }_{43}^{97} \mathrm{Tc}_{54}$ لحساب نسب الخلط لانتقالات كاما المنبعثة من مستويات الطاقة في النظير ((LSF)

$$
\text { من النفاعل }{ }_{42}^{97} \mathrm{Mo}_{55}(\mathrm{p}, \mathrm{n} \gamma){ }_{43}^{97} \mathrm{Tc}_{54}
$$

اظهرت ننائج الحسابات الحالية نوافقناً جيداً مع القيم العطلية. ان الاختلاف بين قيم نسبة 895.4KeV $\left(\frac{7^{+}}{2}-\frac{5^{+}}{2}\right)$ الخلط التي حصلنا علية بطريقة (LSF) والقبم العطلية كان للاننقالات المنبعث من مستوي الطاقة 1219.9KeV و 583.2KeV ($\left.\frac{7^{-}}{2}-\frac{5^{-}}{2}\right)$ المنبعث من مستوي الطاقة 1240.5KeV

Introduction

The multipole mixing ratio is defined as the ratio of the electric quadrupole moment E 2 and magnetic dipole moment M1 matrix elements for gamma transition from an initial $\left(\mathrm{I}_{\mathrm{i}}\right)$ to a final state $\left(\mathrm{I}_{\mathrm{f}}\right)$ which is deduced experimentally from the analysis of the angular distribution of the emitted γ-ray [1]:

$$
\begin{equation*}
\delta=\frac{\left\langle\mathrm{I}_{\mathrm{f}}\|\mathrm{E} 2\| \mathrm{I}_{\mathrm{i}}\right\rangle}{\left\langle\mathrm{I}_{\mathrm{f}}\|\mathrm{M} 1\| \mathrm{I}_{\mathrm{i}}\right\rangle} \tag{1}
\end{equation*}
$$

It is observed that the admixture of mutlipole character are indicated by a connecting line E1-M2 and M1-E2, for the strong dependence of γ-ray transition probabilities on the multipole character.

The contribution to the γ-ray intensity from the second term is usually considerably less than from the first by the factor $(\mathrm{R} / \lambda)^{2 \mathrm{~L}}[2]$, where the wavelength of the emitted radiation λ is much greater than the dimension R of the excited nucleus, which means that E1>E2> E3... and M1>M2> M3 ... [2, 3].

By comparing theoretically and experimental mixing ratios E2/M1 in terms of the reduced matrix elements [4], the simple assumptions on the M1 operator made by Warner [5] are not enable with the presence of both signs of $\delta(\mathrm{I} \rightarrow \mathrm{I} \pm 1)$ in the same nucleus.

The E2/M1 mixing ratios of γ-transition have been defined by Biedenlarn and Rose [6]; Rose and Brink [7]. Their differentiation of ions δ appears to have different signs for emission and absorption [8, 9].

Basic Considerations

Constant Statistical Tensor (CST) Method

In a certain nucleus, the magnetic substates population parameters, $p\left(m_{i}\right)$, as well as the statistical tensor coefficients $\rho_{q}^{\lambda}\left(\mathrm{I}_{\mathrm{i}}\right)$ of levels with the same spin value depend neither upon the energy of the level nor upon its parity [10]. The statistical tensor which is given by Pollti A. R. and Warburton E. K. [11] as follows:

$$
\begin{equation*}
\rho_{\mathrm{q}}^{\lambda}\left(\mathrm{I}_{\mathrm{i}}\right)=\sum_{\substack{\mathrm{m}_{\mathrm{i}}=0 \\ \mathrm{or}=1 / 2}}^{\mathrm{I}_{\mathrm{i}}} \rho_{\mathrm{q}}^{\lambda}\left(\mathrm{I}_{\mathrm{i}}, \mathrm{~m}_{\mathrm{i}}\right) p\left(\mathrm{~m}_{\mathrm{i}}\right) \tag{2}
\end{equation*}
$$

where $\mathrm{p}\left(\mathrm{m}_{\mathrm{i}}\right)$ is the population parameter, its normalized form is given by [12]:

$$
\begin{equation*}
\sum_{m_{i}=-I_{i}}^{\mathrm{I}_{\mathrm{i}}} p\left(\mathrm{~m}_{\mathrm{i}}\right)=1 \tag{3}
\end{equation*}
$$

Would be considered as constant for levels with the same I_{i} values. Therefore, by taking the $\delta=0$ for pure, or considered to be pure transition in the angular distribution coefficient equation as follows [12]:

$$
\begin{equation*}
\mathrm{a}_{\lambda}=\left(2 \mathrm{I}_{\mathrm{i}}+1\right)^{\frac{1}{2}} \rho_{\mathrm{q}}^{\lambda}\left(\mathrm{I}_{\mathrm{i}}\right) \frac{\mathrm{F}_{\lambda}\left(\mathrm{I}_{\mathrm{f}} \mathrm{LLI}_{\mathrm{i}}\right)+2 \delta \mathrm{~F}_{\lambda}\left(\mathrm{I}_{\mathrm{f}} \mathrm{LL'}^{\prime} \mathrm{I}_{\mathrm{i}}\right)+\delta^{2} \mathrm{~F}_{\lambda}\left(\mathrm{I}_{\mathrm{f}} \mathrm{~L}^{\prime} \mathrm{L}^{\prime} \mathrm{I}_{\mathrm{i}}\right)}{1+\delta^{2}} \tag{4}
\end{equation*}
$$

Thus we obtained:

$$
\begin{equation*}
\rho_{\mathrm{o}}^{2}\left(\mathrm{I}_{\mathrm{i}}\right)=\frac{\mathrm{a}_{2}}{\left(2 \mathrm{I}_{\mathrm{i}}+1\right)^{\frac{1}{2}} \mathrm{~F}_{2}\left(\mathrm{I}_{\mathrm{f}} \mathrm{LLI}_{\mathrm{i}}\right)} \tag{5}
\end{equation*}
$$

a_{2} : is the experimental value of the angular distribution coefficient.
The γ-ray transitions from an initial nuclear state with angular momentum I_{i} and parity π_{i} to a final state ($\mathrm{I}_{\mathrm{f}}, \pi_{\mathrm{f}}$), for allowed E2 and M1 transitions, for such γ-transition, the multipole mixing ratio δ which is defined as the ratio of electric quadrupole moment E2 and magnetic dripole moment M1 matrix elements [13].

The γ-ray angular distribution measurements are sensitive to interference effect between M1 and E2 amplitudes, and depend on the relative phase of the M1 and E2 matrix elements [14].

E2/M1 mixing ratios are deduced experimentally from an analysis of the emitted γ-ray where the (CST) method depends on the experimental data and does not depend on any nuclear model.

\mathbf{a}_{2}-Ratio Method

In an electromagnetic radiation, the difference in angular momenta and relative parities of the nuclear states involved in the transition play an important role in determining the transition probability [15].

The δ-mixing ratio for gamma transitions can be calculated by many methods one of these methods is a_{2}-Ratio, where two or more of these transitions from the same initial state can be used, one of them is a pure transition in which $\mathrm{I}_{\mathrm{f}}=0$ such as $1^{+}-0^{+}$or $2^{+}-0^{+}$transition or it might be a pure transition E1, such as $2^{-}-2^{+}, 3^{-}-2^{+}, 3^{-}-4^{+}, 5^{-}-4^{+}, \ldots$ etc or a pure transition E2, such as $4^{+}-2^{+}, 5^{+}-3^{+}, 6^{+}-4^{+}, \ldots$ etc.

So that the other transition can be calculated by using the experimentally a_{2}-coefficient ratio of these transitions where the statistical tensor $\rho_{o}^{\lambda}\left(I_{i}\right)$ which is related to these a_{2}-coefficient would be the same.

This method has been successfully applied by Yohana et al., [10].
In such cases, the a_{2}-coefficient of the pure transition from a certain initial level is given by [12]:

$$
\begin{equation*}
\mathrm{a}_{2}\left(\mathrm{I}_{\mathrm{i}}-\mathrm{I}_{\mathrm{f}_{1}}\right)=\left(2 \mathrm{I}_{\mathrm{i}}+1\right)^{1 / 2} \rho_{\mathrm{o}}^{2}\left(\mathrm{I}_{\mathrm{i}}\right) \mathrm{F}_{2}\left(\mathrm{I}_{\mathrm{f}_{1}} \mathrm{LLI}_{\mathrm{i}}\right) \tag{6}
\end{equation*}
$$

and the other transition from the same level is given by [11, 12]:

$$
\begin{align*}
\mathrm{a}_{2}\left(\mathrm{I}_{\mathrm{i}}-\mathrm{I}_{\mathrm{f}_{2}}\right) & =\left(2 \mathrm{I}_{\mathrm{i}}+1\right)^{\frac{1}{2}} \rho_{\mathrm{o}}^{2}\left(\mathrm{I}_{\mathrm{i}}\right) \times \\
& \frac{\mathrm{F}_{2}\left(\mathrm{I}_{\mathrm{f}_{2}} \mathrm{LLI}_{\mathrm{i}}\right)+2 \delta \mathrm{~F}_{2}\left(\mathrm{I}_{\mathrm{f}_{2}} \mathrm{LL}^{\prime} \mathrm{I}_{\mathrm{i}}\right)+\delta^{2} \mathrm{~F}_{2}\left(\mathrm{I}_{\mathrm{f}_{2}} \mathrm{~L}^{\prime} \mathrm{L}^{\prime} \mathrm{I}_{\mathrm{i}}\right)}{1+\delta^{2}} \tag{7}
\end{align*}
$$

Since the factor $\left(2 I_{i}+1\right)^{1 / 2} \rho_{o}^{2}\left(I_{i}\right)$ is the same for both transitions, so that we can obtain the following equation:

$$
\begin{equation*}
\frac{\mathrm{a}_{2}\left(\mathrm{I}_{\mathrm{i}}-\mathrm{I}_{\mathrm{f}_{2}}\right)}{\mathrm{a}_{2}\left(\mathrm{I}_{\mathrm{i}}-\mathrm{I}_{\mathrm{f}_{1}}\right)}=\frac{\mathrm{F}_{2}\left(\mathrm{I}_{\mathrm{f}_{2}} \mathrm{LLI}_{\mathrm{i}}\right)+2 \delta \mathrm{~F}_{2}\left(\mathrm{I}_{\mathrm{f}_{2}} \mathrm{LL}^{\prime} \mathrm{I}_{\mathrm{i}}\right)+\delta^{2} \mathrm{~F}_{2}\left(\mathrm{I}_{\mathrm{f}_{2}} \mathrm{~L}^{\prime} \mathrm{L}^{\prime} \mathrm{I}_{\mathrm{i}}\right)}{\left(1+\delta^{2}\right) \mathrm{F}_{2}\left(\mathrm{I}_{\mathrm{f}_{1}} \mathrm{LLI}_{\mathrm{i}}\right)} \tag{8}
\end{equation*}
$$

Least Squares Fitting (LSF) Method

In comparing experimental angular distribution data with theoretical calculation (present work), the need often arises to try to extract the best values in an expansion of angular functions. Suppose that instead of measuring a set of n unknown quantities x_{i} directly, it is possible to measure a series of linear functions of these unknowns, if each of n measurement determines a set of coefficients, then these measurements will be related in general way by the sets of a linear equation [16]:

$$
\begin{equation*}
\mathrm{Y}=\mathrm{A}_{0}+\mathrm{A}_{1} \mathrm{x}+\mathrm{A}_{2} \mathrm{x}^{2}+\mathrm{A}_{3} \mathrm{x}^{3}+\ldots \tag{9}
\end{equation*}
$$

where x : is the initial state $\left(\mathrm{I}_{\mathrm{i}}\right)$ and Y is the statistical tensor $\left(\rho_{0}^{2}\left(\mathrm{I}_{\mathrm{i}}\right)\right)$.
The set with minimum χ^{2} was used to calculate the $\rho_{o}^{\lambda}\left(I_{i}\right)$ values for all I_{i} values. The $\rho_{\mathrm{o}}^{\lambda}\left(\mathrm{I}_{\mathrm{i}}\right)$ values were used to determine the δ-values of all γ-transitions whose angular distribution has been measured in the same manner.

This method is used when the statistical tensor $\rho_{\mathrm{o}}^{2}\left(\mathrm{I}_{\mathrm{i}}\right)$ can not be calculated for the reasons that no pure γ-transition or transition considered to be pure can be obtained.

Finally the certain I_{i} values, are fitted to a polynomial series of the form:

$$
\begin{equation*}
\rho_{\mathrm{o}}^{2}\left(\mathrm{I}_{\mathrm{i}}\right)=\sum_{\mathrm{j}=0}^{\mathrm{n}} \mathrm{~A}_{\mathrm{j}} \mathrm{I}_{\mathrm{i}}^{\mathrm{j}} \quad, \mathrm{n}=0,1,2,3,4 \tag{10}
\end{equation*}
$$

Methods of Calculations

In the present work the calculations of constant statistical tensor (CST), a_{2}-Ratio and LSF methods of the used nuclei are depends totally on the $\mathrm{F}_{2}-$ coefficients of the angular momentum of γ-transitions of the initial and final energy levels, $\mathrm{I}_{\mathrm{i}}, \mathrm{I}_{\mathrm{f}}$ and on the experimental data of a_{2}-coefficients of the spin sequence ($I_{i}-I_{f}$). Figure (1) shows the decay scheme of gammatransitions of the nucleus used in this work. Table (1) listed all the used information's in the calculations of the mentioned method previously. Note: Some spins are written without parities as mentioned in the reference [17].

Table (1): Energy of gamma transitions, spin sequences and angular
distribution coefficients F_{2} of ${ }_{43}^{97} \boldsymbol{T c}_{54}$ nucleus.

$\begin{gathered} \hline \text { E } \gamma \\ (\mathrm{KeV}) \\ \text { Ref.[17 } \end{gathered}$	$\mathbf{I}_{\mathbf{i}}^{\boldsymbol{\pi}}$	$\mathbf{I f}_{\text {f }}$	L	$\begin{aligned} & \mathbf{L}^{\prime}= \\ & \mathbf{L}+1 \end{aligned}$	$\mathbf{a}_{2}\left(\Delta \mathrm{a}_{2}\right)$ Ref.[17]	$\mathbf{a}_{2}\left(I_{i}^{\boldsymbol{\pi}}-I_{f}^{\boldsymbol{\pi}}\right)$	F_{2}-Coefficients Ref. [15]		
							$\mathbf{F}_{2}\left(\mathbf{I}_{\mathrm{f}} \mathbf{L L I} \mathbf{I}_{\mathrm{i}}\right)$	$\mathbf{F}_{2}\left(\mathbf{I f}_{\mathrm{f}} \mathbf{L L} \mathbf{L}^{\prime} \mathbf{I}\right)$	$\mathbf{F}_{2}\left(\mathbf{I}_{\mathbf{f}} \mathbf{L}^{\prime} \mathbf{L}^{\prime} \mathbf{I}_{\mathbf{i}}\right)$
1126.9	$\frac{11^{+}}{2}$	$\frac{9^{+}}{2}$	1	2	$0.50(4)$	$\begin{gathered} -\mathbf{0 . 5 0}\left(\frac{11^{+}}{2}-\right. \\ \left.\frac{9^{+}}{2}\right) \end{gathered}$	$\mathbf{F}_{2}\left(\frac{9^{+}}{2} \mathbf{1 1} \frac{11^{+}}{2}\right)=\mathbf{0 . 2 8 7 6}$	$\mathrm{F}_{2}\left(\frac{9^{+}}{2} \mathbf{1 2} \frac{11^{+}}{2}\right)=-\mathbf{0 . 9 2 6 8 8}$	$\mathbf{F}_{\mathbf{2}}\left(\frac{9^{+}}{2} \mathbf{2 2} \frac{11^{+}}{2}\right)=\mathbf{0 . 0 1 5 8 0}$
356.3	$\frac{7+}{2}$	$\frac{5^{+}}{2}$	1	2	$0.11(4)$	$\begin{gathered} -\mathbf{0 . 1 1}\left(\frac{7^{+}}{2}-\right. \\ \left.\frac{5^{+}}{2}\right) \end{gathered}$	$\mathbf{F}_{2}\left(\frac{5^{+}}{2} \mathbf{1 1} \frac{7^{+}}{2}\right)=\mathbf{0 . 3 2 7 3}$ 3	$\mathbf{F}_{\mathbf{2}}\left(\frac{5^{+}}{2} \mathbf{1 2} \frac{7^{+}}{2}\right)=-\mathbf{0 . 9 4 4 9 2}$	$\mathbf{F}_{\mathbf{2}}\left(\frac{5^{+}}{2} \mathbf{2 2} \frac{7^{+}}{2}\right)=-\mathbf{0 . 0 7 7 9 3}$
816.9	$\frac{7+}{2}$	$\frac{5^{+}}{2}$	1	2	$0.13(3)$	$\begin{gathered} -\mathbf{0 . 1 3}\left(\frac{7^{+}}{2}-\right. \\ \left.\frac{5^{+}}{2}\right) \end{gathered}$	$\mathbf{F}_{\mathbf{2}}\left(\frac{5^{+}}{2} \mathbf{1 1} \frac{7^{+}}{2}\right)=\mathbf{0 . 3 2 7 3}$ 3	$\mathbf{F}_{2}\left(\frac{5^{+}}{2} \mathbf{1 2} \frac{7^{+}}{2}\right)=-\mathbf{0 . 9 4 4 9 2}$	$\mathbf{F}_{2}\left(\frac{5^{+}}{2} \mathbf{2 2} \frac{7^{+}}{2}\right)=-\mathbf{0 . 0 7 7 9 3}$
983.9	$\frac{9^{+}}{2}$	$\frac{7+}{2}$	1	2	$0.29(2)$	$\begin{gathered} -\mathbf{0 . 2 9}\left(\frac{9^{+}}{2}-\right. \\ \left.\frac{7^{+}}{2}\right) \end{gathered}$	$\begin{gathered} \mathbf{F}_{2}\left(\frac{7^{+}}{2} 11_{2}^{9^{+}}\right)=\mathbf{0 . 3 0 2 7} \\ \mathbf{7} \end{gathered}$	$\mathbf{F}_{2}\left(\frac{7^{+}}{2} \mathbf{1 2} \frac{9^{+}}{2}\right)=-\mathbf{0 . 9 3 5 4 2}$	$\mathbf{F}_{\mathbf{2}}\left(\frac{7^{+}}{2} \mathbf{2 2} \frac{9^{+}}{2}\right)=-\mathbf{0 . 0 1 9 6 6}$
895.4	$\frac{7^{+}}{2}$	$\frac{5^{+}}{2}$	1	2	$0.09(2)$	$\begin{gathered} -\mathbf{0 . 0 9}\left(\frac{7^{+}}{2}-\right. \\ \left.\frac{5^{+}}{2}\right) \end{gathered}$	$\begin{gathered} \mathbf{F}_{\mathbf{2}}\left(\frac{5^{+}}{2} \mathbf{1 1} \frac{7^{+}}{2}\right)= \\ \mathbf{0 . 3 2 7 3 3} \end{gathered}$	$\mathbf{F}_{\mathbf{2}}\left(\frac{5^{+}}{2} \mathbf{1 2} \frac{7^{+}}{2}\right)=-\mathbf{0 . 9 4 4 9 2}$	$\mathbf{F}_{\mathbf{2}}\left(\frac{5^{+}}{2} \mathbf{2 2} \frac{7^{+}}{2}\right)=-\mathbf{0 . 0 7 7 9 3}$
583.2	$\frac{7-}{2}$	$\frac{5}{2}$	1	2	$0.09(3)$	$\begin{gathered} -\mathbf{0 . 0 9}\left(\frac{7^{-}}{2}-\right. \\ \left.\frac{5^{-}}{2}\right) \end{gathered}$	$\mathbf{F}_{2}\left(\frac{5^{-}}{2} \mathbf{1 1} \frac{7^{-}}{2}\right)=\mathbf{0 . 3 2 7}$ 33	$\mathbf{F}_{2}\left(\frac{5^{-}}{2} 12 \frac{7^{-}}{2}\right)=-\mathbf{0 . 9 4 4 9 2}$	$F_{2}\left(\frac{5^{-}}{2} 22 \frac{7-}{2}\right)=-\mathbf{0 . 0 7 7 9 3}$
916.0	$\frac{7-}{2}$	$\frac{5^{+}}{2}$	1	2	$0.09(2)$	$\begin{gathered} -\mathbf{0 . 0 9}\left(\frac{7^{-}}{2}=\right. \\ \left.\frac{5^{+}}{2}\right) \end{gathered}$	$\mathbf{F}_{2}\left(\frac{5^{+}}{2} \mathbf{1 1} \frac{7-}{2}\right)=\mathbf{0 . 3 2 7 3}$	$\mathrm{F}_{2}\left(\frac{5^{+}}{2} \mathbf{1 2} \frac{7^{-}}{2}\right)=-\mathbf{0 . 9 4 4 9 2}$	$\mathbf{F}_{2}\left(\frac{5^{+}}{2} \mathbf{2 2} \frac{7-}{2}\right)=-\mathbf{0 . 0 7 7 9 3}$
422.6	$\frac{9^{-}}{2}$	$\frac{7^{+}}{2}$	1	2	$0.25(5)$	$\begin{gathered} -0.25\left(\frac{9^{-}}{2}\right. \\ \left.\frac{7^{+}}{2}\right) \end{gathered}$	$\mathbf{F}_{\mathbf{2}}\left(\frac{7^{+}}{2} \mathbf{1 1} \frac{9^{-}}{2}\right)=\mathbf{0 . 3 0 2 7}$ 7	$\mathbf{F}_{\mathbf{2}}\left(\frac{7^{+}}{2} \mathbf{1 2} \frac{9^{-}}{2}\right)=\mathbf{- 0 . 9 3 5 4 2}$	$\mathbf{F}_{\mathbf{2}}\left(\frac{7^{+}}{2} \mathbf{2 2} \frac{9^{-}}{2}\right)=-\mathbf{0 . 0 1 9 6 6}$

Table (1): To be continued (2/2).

	I_{i}^{π}	$\mathrm{I}_{\mathrm{f}}^{\boldsymbol{\pi}}$	L	$\begin{aligned} & \mathbf{L}^{\prime}= \\ & \mathrm{L}+1 \end{aligned}$	$\begin{gathered} \mathbf{a}_{2}\left(\Delta \mathbf{a}_{2}\right) \\ \operatorname{Ref.}[17 \\] \end{gathered}$	$\mathbf{a}_{2}\left(\mathbf{I}_{\mathbf{i}}^{\boldsymbol{\pi}}-\mathbf{I}_{\mathbf{f}}^{\boldsymbol{\pi}}\right)$	F_{2}-Coefficients Ref. [15]		
7]							$\mathbf{F}_{2}\left(\mathbf{I}_{\mathrm{f}} \mathbf{L L I} \mathbf{I}_{\mathrm{i}}\right)$	$\mathbf{F}_{2}\left(\mathbf{I}_{\mathrm{f}} \mathrm{LL}^{\prime} \mathbf{I}_{\mathrm{i}}\right)$	$\mathbf{F}_{\mathbf{2}}\left(\mathbf{I}_{\mathrm{f}} \mathbf{L}^{\prime} \mathbf{L}^{\prime} \mathbf{I}_{\mathbf{i}}\right)$
1094.9	$\frac{9^{+}}{2}$	$\frac{7^{+}}{2}$	1	2	$0.18(2)$	$-0.18\left(\frac{9^{+}}{2}-\frac{7^{+}}{2}\right)$	$\mathrm{F}_{2}\left(\frac{7^{+}}{2} 11 \frac{9^{+}}{2}\right)=0.30277$	$\begin{gathered} \mathrm{F}_{2}\left(\frac{7^{+}}{2} 12 \frac{9^{+}}{2}\right)=- \\ 0.93542 \end{gathered}$	$\begin{gathered} \mathrm{F}_{2}\left(\frac{7^{+}}{2} 22 \frac{9^{+}}{2}\right)=- \\ 0.01966 \end{gathered}$
1310.6	$\frac{9^{+}}{2}$	$\frac{9^{+}}{2}$	1	2	$0.01(3)$	$-0.01\left(\frac{9^{+}}{2}-\frac{9^{+}}{2}\right)$	$\begin{gathered} \mathrm{F}_{2}\left(\frac{9^{+}}{2} 11 \frac{9^{+}}{2}\right)=- \\ 0.44039 \end{gathered}$	$\begin{gathered} \mathrm{F}_{2}\left(\frac{9^{+}}{2} 12 \frac{9^{+}}{2}\right)=- \\ 0.30151 \end{gathered}$	$\begin{gathered} \mathrm{F}_{2}\left(\frac{\mathrm{P}^{+}}{2} 22 \frac{9^{+}}{2}\right)= \\ 0.27524 \end{gathered}$
547.5	$\frac{9^{+}}{2}$	$\frac{11^{+}}{2}$	1	2	$0.18(3)$	$-0.18\left(\frac{9^{+}}{2}-\frac{11^{+}}{2}\right)$	$\begin{gathered} \mathrm{F}_{2}\left(\frac{11^{+}}{2} 11 \frac{9^{+}}{2}\right)= \\ 0.16515 \end{gathered}$	$\begin{gathered} \mathrm{F}_{2}\left(\frac{11^{+}}{2} 12 \frac{9^{+}}{2}\right)= \\ 0.76871 \end{gathered}$	$\begin{gathered} \mathrm{F}_{2}\left(\frac{11^{+}}{2} 22^{9^{+}}\right)= \\ 0.27524 \end{gathered}$
1164.8	$\frac{9^{+}}{2}$	$\frac{7^{+}}{2}$	1	2	$0.26(2)$	$-0.26\left(\frac{9^{+}}{2}-\frac{7^{+}}{2}\right)$	$\mathrm{F}_{2}\left(\frac{7^{+}}{2} 11 \frac{9^{+}}{2}\right)=0.30277$	$\begin{gathered} \mathrm{F}_{2}\left(\frac{7^{+}}{2} 12 \frac{9^{+}}{2}\right)=- \\ 0.93542 \end{gathered}$	$\begin{gathered} \mathrm{F}_{2}\left(\frac{7^{+}}{2} 22 \frac{9^{+}}{2}\right)=- \\ 0.01966 \end{gathered}$
1599.8	$\frac{9^{+}}{2}$	$\frac{7^{+}}{2}$	1	2	$0.18(4)$	$-0.18\left(\frac{9^{+}}{2}-\frac{7^{+}}{2}\right)$	$\mathrm{F}_{2}\left(\frac{7^{+}}{2} 11 \frac{9^{+}}{2}\right)=0.30277$	$\begin{gathered} \mathrm{F}_{2}\left(\frac{7^{+}}{2} 12 \frac{9^{+}}{2}\right)=- \\ 0.93542 \end{gathered}$	$\begin{gathered} \mathrm{F}_{2}\left(\frac{7^{+}}{2} 22 \frac{9^{+}}{2}\right)=- \\ 0.01966 \end{gathered}$
1680.3	$\frac{9^{+}}{2}$	$\frac{7^{+}}{2}$	1	2	$0.27(4)$	$-0.27\left(\frac{9^{+}}{2}-\frac{7^{+}}{2}\right)$	$\mathrm{F}_{2}\left(\frac{7^{+}}{2} 11^{9^{+}}\right)=0.30277$	$\begin{gathered} \mathrm{F}_{2}\left(\frac{7^{+}}{2} 12 \frac{9^{+}}{2}\right)=- \\ 0.93542 \end{gathered}$	$\begin{gathered} \mathrm{F}_{2}\left(\frac{7^{+}}{2} 22 \frac{9^{+}}{2}\right)=- \\ 0.01966 \end{gathered}$

Constant Statistical Tensor (CST) Method

The statistical tensor $\rho_{9}^{\lambda}\left(\mathrm{I}_{\mathrm{i}}\right)$, for the alignment of the initial state for all I_{i}-value of level having one or more pure gamma transitions or can be considered as a pure transition according to equation (6) (i.e. $\delta=0$) can be calculated from the following reduced form of equation (7):

$$
\begin{equation*}
\rho_{\mathrm{o}}^{2}\left(\mathrm{I}_{\mathrm{i}}\right)=\frac{\mathrm{a}_{2}\left(\mathrm{I}_{\mathrm{i}}-\mathrm{I}_{\mathrm{f}}\right)}{\left(2 \mathrm{I}_{\mathrm{i}}+1\right)^{1 / 2} \mathrm{~F}_{2}\left(\mathrm{I}_{\mathrm{f}} \mathrm{LLI}_{\mathrm{i}}\right)} \tag{11}
\end{equation*}
$$

By using this equation for the daughter nucleus ${ }_{43}^{97} \mathrm{Tc}_{54}$ the values of $\rho_{\mathrm{o}}^{2}\left(\mathrm{I}_{\mathrm{i}}\right)$ are listed in table (2). Therefore, angular distribution coefficients $\mathrm{a}_{2}\left(\mathrm{I}_{\mathrm{i}}^{\pi}-\mathrm{I}_{\mathrm{f}}^{\pi}\right)$ could be calculated for selected gamma transitions for ${ }_{43}^{97} \mathrm{Tc}_{54}$ nucleus by using equation (7). The results are shown in tables (3).

Table (2): Values of Constant Statistical Tensor (CST) of selected gamma transitions obtained for ${ }_{43}^{97} \mathrm{Tc}_{54}$ nucleus.

$\begin{gathered} \mathrm{E}_{\gamma} \\ (\mathrm{KeV}) \\ \text { Ref. } \\ {[17]} \end{gathered}$	$\mathrm{I}_{\mathrm{i}}^{\pi}-\mathrm{I}_{\mathrm{f}}^{\pi}$	$\rho_{\mathrm{o}}^{2}\left(\mathrm{I}_{\mathrm{i}}{ }^{\pi}\right)$ for pure transition or considered to be pure
		$\rho_{\mathrm{o}}^{2}\left(\mathrm{I}_{\mathrm{i}}^{\pi}\right)=\frac{\mathrm{a}_{2}\left(\mathrm{I}_{\mathrm{i}}-\mathrm{I}_{\mathrm{f}}\right)}{\left(2 \mathrm{I}_{\mathrm{i}}+1\right)^{1 / 2} \mathrm{~F}_{2}\left(\mathrm{I}_{\mathrm{f}} \mathrm{LLI}_{\mathrm{i}}\right)}$
1126.9	$\frac{11^{+}}{2}-\frac{9^{+}}{2}$	$\rho_{\mathrm{o}}^{2}\left(\frac{11^{+}}{2}\right)=\frac{\mathrm{a}_{2}\left(\frac{11^{+}}{2}-\frac{9^{+}}{2}\right)}{\left(2 \mathrm{I}_{\mathrm{i}}+1\right)^{1 / 2} \mathrm{~F}_{2}\left(\frac{9}{2} 11_{2}^{11}\right)}=\frac{\mathrm{a}_{2}\left(\frac{11^{+}}{2}-\frac{9^{+}}{2}\right)}{(12)^{1 / 2} \times 0.28762}$
$\begin{aligned} & 816.9 \\ & 356.3 \\ & 583.2 \end{aligned}$	$\frac{7^{-}}{2}-\frac{5^{+}}{2}$	$\rho_{\mathrm{o}}^{2}\left(\frac{7^{-}}{2}\right)=\frac{\mathrm{a}_{2}\left(\frac{7^{-}}{2}-\frac{5^{+}}{2}\right)^{*}}{\left(2 \mathrm{I}_{\mathrm{i}}+1\right)^{1 / 2} \mathrm{~F}_{2}\left(\frac{5}{2}+1 \frac{7}{2}\right)}=\frac{\mathrm{a}_{2}\left(\frac{7^{-}}{2}-\frac{5^{+}}{2}\right)}{(8)^{1 / 2} \times 0.32733}$
$\begin{gathered} 422.6 \\ 9839 \\ 1094.9 \end{gathered}$	$-\frac{9^{-}}{2} \frac{7^{+}}{2}$	$\rho_{\mathrm{o}}^{2}\left(\frac{9^{-}}{2}\right)=\frac{\mathrm{a}_{2}\left(\frac{9^{-}}{2}-\frac{7^{+}}{2}\right)^{*}}{\left(2 \mathrm{I}_{\mathrm{i}}+1\right)^{1 / 2} \mathrm{~F}_{2}\left(\frac{7}{2} 11 \frac{9}{2}\right)}=\frac{\mathrm{a}_{2}\left(\frac{9^{-}-7^{+}}{2}\right)}{(10)^{1 / 2} \times 0.30277}$
547.5	$\frac{9^{+}}{2}-\frac{11^{+}}{2}$	$\rho_{\mathrm{o}}^{2}\left(\frac{9^{+}}{2}\right)=\frac{\mathrm{a}_{2}\left(\frac{9^{+}}{2}-\frac{11}{2}^{+}\right)}{\left(2 \mathrm{I}_{\mathrm{i}}+1\right)^{1 / 2} \mathrm{~F}_{2}\left(\frac{11}{2} 11 \frac{9}{2}\right)}=\frac{\mathrm{a}_{2}\left(\frac{9^{+}}{2}-\frac{11^{+}}{2}\right)}{(10)^{1 / 2} \times 0.16515}$
1310.2	$-\frac{9^{+}}{2} \frac{9^{+}}{2}$	$\rho_{\mathrm{o}}^{2}\left(\frac{9^{+}}{2}\right)=\frac{\mathrm{a}_{2}\left(\frac{9^{+}}{2}-\frac{9^{+}}{2}\right)}{\left(2 \mathrm{I}_{\mathrm{i}}+1\right)^{1 / 2} \mathrm{~F}_{2}\left(\frac{9}{2} 11 \frac{9}{2}\right)}=\frac{\mathrm{a}_{2}\left(\frac{9^{+}}{2}-\frac{9^{+}}{2}\right)}{(10)^{1 / 2} \mathrm{x} 0.44039}$

Table (3): Values of $a_{2}\left(\mathrm{I}_{\mathrm{i}}^{\pi}-\mathrm{I}_{\mathrm{f}}^{\pi}\right)$ for selected gamma transitions
for ${ }_{43}^{97} \mathrm{Tc}_{54}$ nucleus by using equation (7).

$\underset{\text { Ref. [17] }}{\mathrm{E}_{\gamma}(\mathrm{KeV})}$	$\mathrm{a}_{2}\left(\mathrm{I}_{\mathrm{i}}^{\pi}-\mathrm{I}_{\mathrm{f}}^{\pi}\right)=\left(2 \mathrm{I}_{\mathrm{i}}+1\right)^{1 / 2} \rho_{\mathrm{o}}^{2}\left(\mathrm{I}_{\mathrm{i}}\right) \frac{\mathrm{F}_{2}\left(\mathrm{I}_{\mathrm{f}} \mathrm{LL} \mathrm{I}_{\mathrm{i}}\right)+2 \delta \mathrm{~F}_{2}\left(\mathrm{I}_{\mathrm{f}} \mathrm{LL'}^{\prime} \mathrm{i}^{2}\right)+\delta^{2} \mathrm{~F}_{2}\left(\mathrm{I}_{\mathrm{f}} \mathrm{L}^{\prime} L^{\prime} \mathrm{I}_{\mathrm{i}}\right)}{1+\delta^{2}}$
1126.9	$a_{2}\left(\frac{11^{+}}{2}-\frac{o^{+}}{2}\right)=3.4 \rho_{o}^{2}\left(\frac{11}{2}\right) \frac{0.28762-1.85376 \delta+0.01580 \delta^{2}}{1+\delta^{2}}$
$\begin{aligned} & 356.3 \\ & 816.9 \\ & 583.2 \end{aligned}$	$a_{2}\left(\frac{7^{-}-5^{+}}{2}\right)=2.8 \rho_{o}^{2}\left(\frac{7}{2}\right) \frac{0.32733-1.88984 \delta-0.07793 \delta^{2}}{1+\delta^{2}}$
$\begin{gathered} 983.9 \\ 422.6 \\ 1094.9 \end{gathered}$	$a_{2}\left(\frac{q^{-}-\frac{\gamma^{+}}{2}}{2}\right)=3.1 \rho_{0}^{2}\left(\frac{\rho}{2}\right) \frac{-0.93542-0.03932 \delta-0.44039 \delta^{2}}{1+\delta^{2}}$
1310.2	$a_{2}\left(\frac{q^{-}-\frac{\rho^{+}}{2}}{2}\right)=3.1 \rho_{0}^{2}\left(\frac{9}{2}\right) \frac{-0.44039-0.60302 \delta+0.27524 \delta^{2}}{1+\delta^{2}}$
547.5	$a_{2}\left(\frac{\rho^{+}-11^{+}}{2}\right)=3.1 \rho_{o}^{2}\left(\frac{9}{2}\right) \frac{0.16515+1.53742 \delta+0.27524 \delta^{2}}{1+\delta^{2}}$

The \mathbf{a}_{2}-ratio Method

In this method the δ-mixing ratios needs to be determined by using double $\mathrm{a}_{2}\left(\mathrm{I}_{\mathrm{i}}-\mathrm{I}_{\mathrm{f}}\right)$ coefficients from the same initial level I_{i} to different levels I_{f}. One of them represents the experimental a_{2}-coefficients reported for \square-transition whose δ-values are to be calculated and the other represents the experimental a_{2}-coefficient reported for the pure transition or can be considered as a pure \square-transition.

The product nuclei that have at least two \square-transitions whose angular distributions have been measured its angular momentum L is taken to be:

$$
\mathrm{L}_{\min }=\left|\mathrm{I}_{\mathrm{i}}-\mathrm{I}_{\mathrm{f}}\right| \quad \text { and } \mathrm{L}^{\prime}=\mathrm{L}+1, \quad \text { where } \mathrm{L} \neq 0
$$

For all possible \square-transitions in the case of the odd-even ${ }_{43}^{97} \mathrm{Tc}_{54}$ nucleus. The calculations of a_{2}-Ratio is independent neither on energy level nor on the \square-transitions energy, so that by using F_{2} and a_{2} coefficients we can get more values of δ-mixing ratios by this method.

Table (4) listed the values of δ-mixing ratios according to equation (8) of a_{2}-Ratio method.

The δ-values of selected \square-transitions whose angular distributions have been measured are calculated in the same manner for the selected reactions.

Table (4): a_{2}-Ratios for selected gamma- transitions of ${ }_{43}^{97} \boldsymbol{T c}_{54}$ and δ-mixing ratios by using equation (8).

$\begin{gathered} \mathrm{E}_{i} \\ (\mathrm{KeV}) \end{gathered}$	$\begin{gathered} \mathrm{E}_{\gamma} \\ (\mathrm{KeV}) \end{gathered}$	$\underline{\mathrm{a}_{2}\left(\mathrm{I}_{\mathrm{i}}^{\pi}-\mathrm{I}_{\mathrm{f}_{2}}^{\pi}\right)}=\underline{\mathrm{F}_{2}\left(\mathrm{I}_{\mathrm{f}_{2}} \mathrm{LLI}_{\mathrm{i}}\right)+2 \delta \mathrm{~F}_{2}\left(\mathrm{I}_{\mathrm{f}_{2}} L L L '^{\prime} \mathrm{I}_{\mathrm{i}}\right)+\delta^{2} \mathrm{~F}_{2}\left(\mathrm{I}_{\mathrm{f}_{2}} \mathrm{~L}^{\prime} \mathrm{L}^{\prime} \mathrm{I}_{\mathrm{i}}\right)}$
Ref. [17]	Ref. [17]	$\mathrm{a}_{2}\left(\mathrm{I}_{\mathrm{i}}^{\pi}-\mathrm{I}_{\mathrm{f}_{1}}^{\pi}\right) \quad \mathrm{F}_{2}\left(\mathrm{I}_{\mathrm{f}_{1}} \mathrm{LLI}_{\mathrm{i}}\right)\left(1+\delta^{2}\right)$
1141.4	$\begin{aligned} & 356.3 \\ & 816.9 \end{aligned}$	$\frac{\mathrm{a}_{2}\left(\frac{\gamma^{+}-\frac{5^{+}}{2}}{2}\right)}{\mathrm{a}_{2}\left(\frac{\gamma^{+}}{2}-\frac{5^{+}}{2}\right)}=\frac{0.32733-1.88984 \delta-0.07793 \delta^{2}}{0.32733\left(1+\delta^{2}\right)}$
1141.4	$\begin{aligned} & 816.9 \\ & 356.3 \end{aligned}$	$\frac{\mathrm{a}_{2}\left(\frac{7^{+}-\frac{5^{+}}{2}}{2}\right)}{\mathrm{a}_{2}\left(\frac{7^{+}}{2}-\frac{5^{+}}{2}\right)}=\frac{0.32733-1.88984 \delta-0.07793 \delta^{2}}{0.32733\left(1+\delta^{2}\right)}$
$\begin{aligned} & 1199.6 \\ & 1277.1 \end{aligned}$	$\begin{aligned} & 983.9 \\ & 422.6 \end{aligned}$	$\frac{\mathbf{a}_{2}\left(\frac{9^{+}}{2}-\frac{7^{+}}{2}\right)}{a_{2}\left(\frac{9^{-}}{2}-\frac{7^{+}}{2}\right)}=\frac{0.30277-1.87084 \delta-0.01966 \delta^{2}}{0.30277\left(1+\delta^{2}\right)}$
$\begin{aligned} & 1219.9 \\ & 1240.5 \end{aligned}$	$\begin{aligned} & 895.4 \\ & 583.2 \end{aligned}$	$\frac{\mathrm{a}_{2}\left(\frac{7^{+}}{2}-\frac{5^{+}}{2}\right)}{\mathrm{a}_{2}\left(\frac{7^{-}}{2}-\frac{5^{-}}{2}\right)}=\frac{0.32733-1.88984 \delta-0.07793 \delta^{2}}{0.32733\left(1+\delta^{2}\right)}$
1240.5	$\begin{aligned} & 583.2 \\ & 916.0 \end{aligned}$	$\frac{\mathrm{a}_{2}\left(\frac{7^{-}-5^{-}}{2}\right)}{\mathrm{a}_{2}\left(\frac{7^{-}-5^{+}}{2}-\frac{0}{2}\right)}=\frac{0.32733-1.88984 \delta-0.07793 \delta^{2}}{0.32733\left(1+\delta^{2}\right)}$
1240.5	$\begin{gathered} 916.0 \\ 583.2 \end{gathered}$	$\frac{\mathrm{a}_{2}\left(\frac{7^{-}-5^{+}}{2}\right)}{\mathrm{a}_{2}\left(\frac{7^{-}-5^{-}}{2}-\frac{0}{2}\right)}=\frac{0.32733-1.88984 \delta-0.07793 \delta^{2}}{0.32733\left(1+\delta^{2}\right)}$
$\begin{aligned} & 1277.1 \\ & 1199.6 \end{aligned}$	$\begin{aligned} & 422.6 \\ & 983.9 \end{aligned}$	$\frac{\mathrm{a}_{2}\left(\frac{\rho^{-}-9^{+}}{2}\right)}{\mathrm{a}_{2}\left(\frac{\rho^{+}}{2}-\frac{7^{+}}{2}\right)}=\frac{-0.44039-0.60302 \delta-0.27524 \delta^{2}}{0.30277\left(1+\delta^{2}\right)}$
1310.6	$\begin{aligned} & 1094.9 \\ & 1310.6 \end{aligned}$	$\frac{\mathrm{a}_{2}\left(\frac{\rho^{+}}{2}-\frac{7^{+}}{2}\right)}{\mathrm{a}_{2}\left(\frac{\rho^{+}}{2}-\frac{9^{+}}{2}\right)}=\frac{0.30277-1.87084 \delta-0.01966 \delta^{2}}{-0.44039\left(1+\delta^{2}\right)}$
1310.6	$\begin{aligned} & 1310.6 \\ & 1094.9 \end{aligned}$	
1380.5	$\begin{gathered} 547.5 \\ 1164.8 \end{gathered}$	$\frac{\mathrm{a}_{2}\left(\frac{\rho^{+}}{2} \frac{11^{+}}{2}\right)}{\mathrm{a}_{2}\left(\frac{\rho^{+}}{2}-\frac{7^{+}}{2}\right)}=\frac{0.16515+1.53742 \delta-0.27524 \delta^{2}}{0.30277\left(1+\delta^{2}\right)}$
$\begin{aligned} & 1815.5 \\ & 1896.0 \end{aligned}$	$\begin{aligned} & 1599.8 \\ & 1680.3 \end{aligned}$	$\frac{a_{2}\left(\frac{9^{+}}{2}-\frac{7^{+}}{2}\right)}{a_{2}\left(\frac{9^{-}}{2}-\frac{7^{+}}{2}\right)}=\frac{0.30277-1.87084 \delta-0.01966 \delta^{2}}{0.30277\left(1+\delta^{2}\right)}$
$\begin{aligned} & 1986.0 \\ & 1380.5 \end{aligned}$	$\begin{gathered} 1680.3 \\ 547.5 \end{gathered}$	$\frac{\mathrm{a}_{2}\left(\frac{\rho^{+}-}{2}-\frac{7^{+}}{2}\right)}{\mathrm{a}_{2}\left(\frac{\rho^{+}}{2}-\frac{11^{+}}{2}\right)}=\frac{0.30277-1.87084 \delta-0.01966 \delta^{2}}{0.16515\left(1+\delta^{2}\right)}$

Least Squares Fitting (LSF) Method

In this method the statistical tensor $\rho_{o}^{2}\left(\mathrm{I}_{\mathrm{i}}\right)$ values were calculated for levels with different I_{i}-values, and fitted to a polynomial series as given in equation (10) for $\mathrm{n}=4$ which given as follows:

$$
\begin{equation*}
\rho_{\mathrm{o}}^{2}\left(\mathrm{I}_{\mathrm{i}}\right)=\mathrm{A}_{\mathrm{o}}+\mathrm{A}_{1} \mathrm{I}_{\mathrm{i}}+\mathrm{A}_{2} \mathrm{I}_{\mathrm{i}}^{2}+\mathrm{A}_{3} \mathrm{I}_{\mathrm{i}}^{3}+\mathrm{A}_{4} \mathrm{I}_{\mathrm{i}}^{4} \tag{12}
\end{equation*}
$$

The set of A-parameters that gave minimum Chi-squared ($\chi_{\text {min }}^{2}$) was used to calculate the $\rho_{o}^{2}\left(\mathrm{I}_{\mathrm{i}}\right)$ for all I_{i} values.

The δ-mixing ratios of selected γ-transitions were calculated depending on the (CST) values obtained by this method.

Results and Discussions

Determination of \square-mixing ratio of \square-transitions from levels of ${ }_{43}^{97} \mathbf{T c}_{54}$ populated in The ${ }_{42}^{97} \mathbf{M o}{ }_{55}(\alpha, \mathbf{n} \gamma){ }_{43}^{97} \mathbf{T c}_{54}$ Reaction

1: Using CST Method

Table (5) contains the results of the present calculations of δ-mixing ratio for gamma transitions in comparisons with experimental data reported in ref. [17].

The comparison shows in general a good agreement between the present \square-values with those of ref. [17].
The disagreements in δ-values occur in the following transitions:
1- The $547.5 \mathrm{KeV}\left(\frac{9^{+}}{2}-\frac{11^{+}}{2}\right)$ transition emitted from energy level 1380.5 KeV .

2- The $1164.8 \mathrm{KeV}\left(\frac{9^{+}}{2}-\frac{7^{+}}{2}\right)$ transition emitted from energy level 1380.5 KeV .

3- The $983.9 \mathrm{KeV}\left(\frac{9^{+}}{2}-\frac{7^{+}}{2}\right)$ transition emitted from energy level 1199.6 KeV .

4- The $422.6 \mathrm{KeV}\left(\frac{9^{+}}{2}-\frac{7^{+}}{2}\right)$ transition emitted from energy level 1277.1 KeV .

Due to the statistical approximations in considering them as a pure transitions in the calculation of the weighted average of $\rho_{\mathrm{o}}^{2}\left(\mathrm{I}_{\mathrm{i}}\right)$.

Table (5): Values of δ-mixing ratios according to the three methods and adopted values of ${ }_{43}^{97} \boldsymbol{T} \boldsymbol{c}_{54}$ nucleus.

$\begin{gathered} \mathbf{E}_{i} \\ (\mathbf{K e V}) \\ \text { Ref. } \\ {[17]} \end{gathered}$	$\begin{gathered} \mathbf{E}_{\boldsymbol{Y}} \\ (\mathbf{K e v}) \\ \text { Ref. } \\ {[17]} \end{gathered}$	$\mathrm{I}_{\mathrm{i}}^{\pi}-\mathrm{I}_{\mathrm{f}}^{\pi}$	$\begin{gathered} \hline \mathbf{a}_{2}\left(\Delta \mathbf{a}_{2}\right) \\ \mathbf{a}_{4}\left(\Delta \mathbf{a}_{2}\right) \\ \text { Ref. } \\ {[17]} \end{gathered}$	$\rho_{q}^{\lambda}\left(I_{i}\right)$		$\delta^{\text {-mixing Ratios }}$						
				$\begin{gathered} \rho_{0}^{2}\left(\mathbf{I}_{\mathrm{i}}\right) \\ (\mathbf{p w}) \end{gathered}$	Weighted average (pw)	$\begin{array}{\|c} \text { Exp. } \\ \text { Ref.[17] } \end{array}$	(pw)					
							CST		Ratio	LSF	Adopted	
1126.9	1126.9	$\frac{11^{+}}{2}-\frac{9^{+}}{2}$	$\begin{gathered} -0.50(4) \\ 0.01(4) \end{gathered}$	$\begin{gathered} 1.740(\\ 139) \end{gathered}$	$\begin{gathered} 1.74000 \\ (139) \end{gathered}$	0.84 ${ }_{-0.4}^{+0.5}$	0.60 (5) or 18.56_{-1}^{+1}		-	$\begin{gathered} 0.44 \\ (5) \\ \text { or } \\ 3.64 \\ (5) \end{gathered}$	0.44(1)	$\begin{gathered} \mathrm{M} 1+(16.1 \pm 0 \\ .7) \% \mathrm{E} 2 \end{gathered}$
1141.4	356.3	$\frac{7^{+}}{2}-\frac{5^{+}}{2}$	$\begin{gathered} -\mathbf{0 . 1 1 (4)} \\ \mathbf{0 . 0 (5)} \end{gathered}$	$\begin{aligned} & 0.336(\\ & 122) \end{aligned}$	$\begin{gathered} -0.31149 \\ (2716) \end{gathered}$	$\mathbf{0 . 3 6}{ }_{-0.12}^{+0.17}$	$\mathbf{0 . 2 8} \mathbf{- 0}_{-0 \mid 0 \mathrm{PM} 1}^{+0.44}$		0.14(18)	$\begin{gathered} 0.20(7) \\ \text { or } \\ 12.64(4) \end{gathered}$	0.19(4)	$\begin{gathered} \text { M1 }+(\mathbf{3 . 4} \pm 1 . \\ \text { 6) } \mathbf{M} \mathbf{M} \end{gathered}$
	816.9	$\frac{7^{+}}{2}-\frac{5^{+}}{2}$	$\begin{gathered} -\mathbf{0 . 1 3 (3)} \\ \mathbf{0 . 0 (3)} \end{gathered}$	$\begin{gathered} 0.397(\\ 61) \end{gathered}$		$\mathbf{0 . 7 8}{ }_{-0.44}^{+0.93}$	$\begin{gathered} 0.30(22 \\) \end{gathered}$	$\begin{array}{\|c} \hline 0.03 \\ 40) \end{array}$	M1	$\begin{aligned} & \hline 0.15(7) \\ & \text { or } \\ & 12.35(4) \end{aligned}$	0.16(3)	$\begin{gathered} \text { M1 }+(3.4 \pm 1 . \\ 2) \% \mathrm{E} \mathbf{2} \end{gathered}$
1199.6	983.9	$\frac{9^{+}}{2}-\frac{7^{+}}{2}$	$\begin{gathered} -0.29(2) \\ 0.0(3) \end{gathered}$	$0.957 \text { (}$ 66)	$\begin{gathered} -0.64419 \\ (0.03083) \end{gathered}$	$0.97_{-0.4}^{+0.3}$	$\begin{gathered} \hline 0.1(5) \\ \text { or } \\ 13.9(\\ 9) \end{gathered}$	M1	$\begin{gathered} 0.5(5 \\ 0) \end{gathered}$	$\begin{gathered} 0.17(4) \\ \text { or } \\ 1.9(9) \end{gathered}$	0.12(3)	$\begin{gathered} \text { M1 } \mathbf{8}) \% \mathbf{(1 . 4} \mathbf{E} \mathbf{2} . \end{gathered}$
1219.9	895.4	$\frac{7^{+}}{2}-\frac{5^{+}}{2}$	$\begin{gathered} -\mathbf{0 . 0 9 (2)} \\ \mathbf{0 . 0 (3)} \end{gathered}$	0.274 61)		0.81 ${ }_{-0.4}^{+07}$	$\begin{gathered} \hline 0.26(\\ 22) \\ \text { or } \\ 21.63 \\ (11) \\ \hline \end{gathered}$	M1	$\begin{gathered} 0.0(11) \\ \text { or } \\ 25(24 \\) \end{gathered}$	$\begin{gathered} 0.16(4) \\ \text { or } \\ 13.9(2) \end{gathered}$	0.14(3)	$\begin{gathered} \text { M1 }+(1.9 \pm \mathbf{0} . \\ 9) \% \mathbf{E}^{2} . \end{gathered}$
	583.2	$\frac{7^{-}}{2}-\frac{5^{-}}{2}$	$\begin{gathered} \mathbf{- 0 . 0 9 (3)} \\ \mathbf{0 . 0 (4)} \end{gathered}$	$\begin{gathered} 0.274(\\ 91) \end{gathered}$	$\begin{gathered} -0.31149 \\ (2716) \end{gathered}$	0.81 ${ }_{-0.37}^{+0.58}$	$\begin{gathered} \hline 0.26(\\ 32) \\ \text { or } \\ 21.68 \\ (22) \\ \hline \end{gathered}$	M1	0.0 (16) or $24.23(2$ $4.0)$	$\begin{aligned} & 0.16(4) \\ & \text { or } \\ & 13.9(8) \end{aligned}$	0.02(1)	$\begin{gathered} \mathrm{M} 1+(0.039 \pm \\ 0.05) \% \mathrm{E} 2 \end{gathered}$
1240.5	916.0	$\frac{7^{-}}{2}-\frac{5^{+}}{2}$	$\begin{gathered} -\mathbf{0 . 0 9 (2)} \\ \mathbf{0 . 0 (3)} \end{gathered}$	$\begin{gathered} 0.274(\\ 61) \end{gathered}$		$\mathbf{0 . 8 1} \mathbf{- 0 . 5 1}_{+1.0}$	$\begin{gathered} 0.26(\\ 1) \\ \text { or } \\ 28.05 \\ (17) \end{gathered}$	$\left\|\begin{array}{c} 0.0(0 . \\ 1) \\ \text { or } \\ 24.23 \\ 24) \end{array}\right\|$	E1	$\begin{gathered} 0.16(7) \\ \text { or } \\ 13.9(22) \end{gathered}$	0.25(6)	$\begin{gathered} E 1+(5 \pm 3.7) \\ \% \mathbf{M} 2 \end{gathered}$
1277.1	422.6	$\frac{9^{-}}{2}-\frac{7^{+}}{2}$	$\begin{gathered} -0.25(5) \\ 0.01(6) \end{gathered}$	$\begin{aligned} & 0.825(\\ & 1.651) \end{aligned}$	$\begin{gathered} -0.64419 \\ (\mathbf{0 . 0 3 0 8 3}) \end{gathered}$	$\begin{gathered} \mathbf{0 . 3 8}_{-0.08}^{+0.11} \\ \text { or } \\ \mathbf{1 . 6 6} \\ -0.31 \\ +028 \end{gathered}$	0.1(2)	E1	0.5(2)	$\begin{gathered} 0.22(6) \\ \text { or } \\ 2.5(3) \end{gathered}$	0.23(5)	$\underset{\mathrm{M} 2}{\mathrm{E} 1+(5+2.2) \%}$

Table (5): To be continued 2/2.

$\begin{gathered} \hline \mathbf{E}_{\mathrm{i}} \\ (\mathbf{K e}) \\ \text { Ref. } \\ {[14]} \end{gathered}$	$\begin{aligned} & \hline \mathbf{E}_{\mathrm{D}} \\ & (\mathbf{K e V}) \\ & \text { Ref. } \\ & {[14]} \end{aligned}$	$\mathrm{I}_{\mathrm{i}}^{\pi}-\mathrm{I}_{\mathrm{f}}^{\pi}$		$\rho_{\mathrm{q}}^{\lambda}\left(\mathbf{I}_{\mathrm{i}}\right)$		\square-mixing Ratios						Multipol arity (pw)
				$\underset{(\mathbf{p w})}{\rho_{0}^{2}\left(\mathbf{I}_{\mathbf{i}}\right)}$	Weighted average (pw)	$\begin{aligned} & \text { Exp. } \\ & \text { Ref. } \\ & \text { [14] } \end{aligned}$	(pw)					
							CST	\mathbf{a}_{2}-Ratio		LSF	$\begin{array}{\|c} \hline \text { Adopte } \\ \text { d } \end{array}$	
13106	10949	$\frac{9^{+}}{2}-\frac{7^{+}}{2}$	$\begin{gathered} 0.18(2) \\ 0.0(3) \end{gathered}$	$\begin{gathered} -0.594 \\ (66) \end{gathered}$	$\begin{aligned} & -0.64419 \\ & (0.03083) \end{aligned}$	$\begin{array}{\|c} \\ \mathbf{0 . 1 4}_{-0.04}^{+0.05} \\ \text { or } \\ \mathbf{3 . 1 0} 0_{-0.4}^{0.0 .5} \\ \hline \end{array}$	0.12(5)	M1	$\underset{\mathbf{t}}{\text { I.Roo }}$	$\begin{gathered} 0.13 \\ (\mathbf{4}) \\ \text { or } \\ 3.7(5) \\ \hline \end{gathered}$	0.12(0)	$\underset{\% \mathrm{E} 2}{\mathrm{M} 1+1.4}$
13106	13106	$\frac{9^{+}}{2}-\frac{9^{+}}{2}$	$\underset{0.01(3)}{0.0(4)}$	$\underset{(68)}{-0.022}$	$\begin{array}{r} -\mathbf{0 . 6 4 4 1 9} \\ (\mathbf{0 . 0 3 0 8 3}) \end{array}$	$0.63{ }_{-0.11}^{+0.14}$	$\begin{gathered} 0.58(7) \\ \text { or } \\ 2.80(11) \end{gathered}$	$\begin{aligned} & 1.09(4) \\ & \text { I.Root } \end{aligned}$	M1	$\begin{gathered} 0.15 \\ (2) \\ \text { or } \\ 40.45 \\ (1) \\ \hline \end{gathered}$	0.35(1)	$\begin{gathered} \text { M1+(10. } \\ \underset{\mathrm{E}+0.5) \%}{ } \end{gathered}$
13805	547.5	$\frac{9^{+}}{2}-\frac{11^{+}}{2}$	$\begin{aligned} & \mathbf{0 . 1 8 (3)} \\ & \mathbf{0 . 0 0 3 (0)} \\ & (0) \end{aligned}$	$\begin{gathered} -1.085 \\ (181) \end{gathered}$		$\begin{gathered} -\mathbf{4 . 0} \mathbf{o}_{-1.7}^{+1.1} \\ \text { or } \\ -\mathbf{0 . 3 3} \\ -0.0 .08 \end{gathered}$	$\begin{array}{\|c} -7.49(49) \\ \text { or } \\ \qquad \begin{array}{c} -\mathbf{o r} \\ \hline \end{array} \mathbf{- 0 . 0 6 1 (8)} \end{array}$	M1	$\begin{gathered} \hline- \\ 5.5(1 . \\ 2) \\ \text { or } \\ 0.02(\\ 5) \\ \hline \end{gathered}$	$\begin{gathered} 7.4(5) \\ \text { or } \\ -\mathbf{- 0 . 2 1} \\ (\mathbf{3}) \end{gathered}$	-7.3(3)	$\begin{gathered} \text { M1+(98. } \\ \underset{\text { E2 }}{\mathbf{1} 0.1) \%} \end{gathered}$
	11648	$\frac{9^{+}}{2}-\frac{7^{+}}{2}$	0.26(2) 0.004 (3 0)	$\begin{gathered} -0.858 \\ (66) \end{gathered}$			$\begin{gathered} \mathbf{0 . 1 0}(\mathbf{0}) \\ \text { or } \\ -1.53_{-1.125}^{+1.15} \end{gathered}$	 0.05^{*} (11) or $0.95(9)$	M1	$\mathbf{0 . 2 2}$ (2) or $2.44(3)$	0.10(0)	$\underset{\% \mathrm{E} 2}{\mathrm{M} 1+0.99}$
18155	15998	$\frac{9^{+}}{2}-\frac{7^{+}}{2}$		$\begin{aligned} & -0.594 \\ & (132) \end{aligned}$		$\begin{array}{\|c} \mathbf{0 . 1 4 1}_{-0.06}^{+0.07} \\ \text { or } \\ \mathbf{3 . 0 8}_{-0.74}^{+0.74} \end{array}$	$\left.\begin{array}{c\|} \hline \mathbf{0 . 1 2 (9)} \\ \text { or } \\ -7.42_{-13.17}^{+337} \end{array} \right\rvert\,$	M1	0.05(3)	$\mathbf{0 . 1 3}$ (2) or $3.7(3)$	0.10(1)	$\begin{aligned} & \mathbf{M 1 + (0 . 9} \\ & \underset{\mathbf{2 0 . 2) \%}}{2} \end{aligned}$
18960	16803	$\frac{9^{+}}{2}-\frac{7^{+}}{2}$	$\begin{array}{\|l} 0.27(4) \\ 0.0(5) \end{array}$	$\begin{gathered} -0.980 \\ (132) \end{gathered}$		$\left\lvert\, \begin{gathered} \mathbf{0 . 2 1} \pm \mathbf{0 . 1} \\ \text { or } \\ \mathbf{2 . 4 8} \\ -{ }_{-0.06}^{+1.1} \end{gathered}\right.$	$\begin{array}{\|c} \mathbf{0 . 1 0 (1 1)} \\ \text { or } \\ -1.48_{-2274}^{+200} \end{array}$	M1	0.05(5)	$\begin{gathered} 0.24 \\ (2) \\ \text { or } \\ 2.30(7) \end{gathered}$	0.21(1)	$\begin{gathered} \mathrm{M} 1+(\mathbf{4 . 2} \\ \underset{\mathbf{0 . 3}) \% \mathrm{E}}{\mathbf{2}} \end{gathered}$

2: Using \mathbf{a}_{2}-Ratio Method

The energy level of ${ }_{43}^{97} \mathrm{Tc}_{54}$ and the related γ-transitions whose a_{2}-coefficients have been used to calculate the corresponding δ-values by this method are presented in table (5).

The δ-values which can be calculated by a_{2}-Ratio are in agreement with the values in ref. [17] except the following:
1- The $1094.9 \mathrm{KeV}\left(\frac{9^{+}}{2}-\frac{7^{+}}{2}\right)$ transition and the $1310.6 \mathrm{KeV}\left(\frac{9^{+}}{2}-\frac{9^{+}}{2}\right)$ transition emitted from the same energy level of 1310.6 KeV .

The imaginary root obtained for the 1094.9 KeV transition assuming a pure M1 transition for the second one confirm that the disagreement is also occurs for the 1310.6 KeV transition when we assume a pure M1 transition for the 1094.9 KeV respectively.
2- The $547.5 \mathrm{KeV}\left(\frac{9^{+}}{2}-\frac{11^{+}}{2}\right)$ transition and $1164.8 \mathrm{KeV}\left(\frac{9^{+}}{2}-\frac{7^{+}}{2}\right)$ transition emitted from the same energy level 1380.5 KeV .
This indicates that both transitions are not pure, but we considered them as a pure transitions in the calculation of $\rho_{0}^{2}\left(\mathrm{I}_{\mathrm{i}}\right)$. Also because the experimental a_{2}-coefficients differ with two values of delta mixing ratios $\left(-4.0_{-1.07}^{+1.1}\right.$ and $-0.33_{-0.1}^{+0.08}$ for 547.5 Kev transition and $-0.31_{-0.04}^{+0.01}$ and $1.96_{-0.12}^{+0.18}$ for 1164.8 KeV transition respectively) due to some circumstances in measurements.
3- The $583.2 \mathrm{KeV}\left(\frac{7^{-}}{2}-\frac{5^{-}}{2}\right)$ transition and $916.0 \mathrm{KeV}\left(\frac{7^{-}}{2}-\frac{5^{+}}{2}\right)$ transition emitted from the same energy level 1240.5 KeV , which consistent with pure M1 and E1 respectively.
The adopted δ-values are still correct since they are lying within the range of the experimental data.

3: Using LSF-Method

The $\rho_{o}^{2}\left(\mathrm{I}_{\mathrm{i}}\right)$ values presented in table (5), by fitting equation (10), using (LSF.for) program.

The fitting equation parameters $\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ and A_{4}, the $\chi_{\text {min }}^{2}$ values and the weighted average of $\rho_{o}^{2}\left(\mathrm{I}_{\mathrm{i}}\right)$ values for each I_{i} are present in table (6).

Table (6): The calculated $\rho_{\rho}^{2}\left(\mathrm{I}_{\mathrm{i}}\right)$ values using (LSF) method at minimum chi squared and the $\boldsymbol{A}_{\boldsymbol{j}}$ coefficients for each initial level in ${ }_{43}^{97} \mathrm{Tc}_{54}$ nucleus.

I_{i}	A_{o}	A_{1}	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	χ^{2}	$\rho_{\mathrm{o}}^{2}\left(\mathrm{I}_{\mathrm{i}}\right)$
$\frac{7}{2}$	$-0.264429 \mathrm{E}+00$	$0.178426 \mathrm{E}-17$	$-0.254236 \mathrm{E}-01$	$-0.206236 \mathrm{E}-19$	0.000000	$0.724465 \mathrm{E}+02$	$-0.575869 \mathrm{E}+00$
$\frac{9}{2}$	$-0.583291 \mathrm{E}+00$	$0.163590 \mathrm{E}-16$	$-0.317972 \mathrm{E}-01$	$0.597001 \mathrm{E}-20$	0.000000	$0.484378 \mathrm{E}+03$	$-0.122718 \mathrm{E}+01$
$\frac{11}{2}$	$0.162864 \mathrm{E}+01$	$-0.242344 \mathrm{E}-16$	$0.57507 \mathrm{E}-01$	$0.597340 \mathrm{E}-19$	0.000000	$0.137284 \mathrm{E}+03$	$0.336864 \mathrm{E}+01$

The $\rho_{o}^{2}\left(\mathrm{I}_{\mathrm{i}}\right)$ values were then used to calculate the δ-values for all γ-transitions, whose angular distributions have been measured.

The δ-values calculated using these $\rho_{o}^{2}\left(\mathrm{I}_{\mathrm{i}}\right)$ values are also presented in table (6). The comparison of δ-values calculated by this method with experimental values and other method (CST and a_{2}-ratios) show a good agreement with most values.

The disagreements in the values of δ are in the following transitions.
1- The $816.9 \mathrm{KeV}\left(\frac{7^{+}}{2}-\frac{5^{+}}{2}\right)$ transition emitted from energy level 1141.4 KeV .

2- The $983.9 \mathrm{KeV}\left(\frac{9^{+}}{2}-\frac{7^{+}}{2}\right)$ transition emitted from energy level 1199.6 KeV .

3- The $1310.6 \mathrm{KeV}\left(\frac{9^{+}}{2}-\frac{9^{+}}{2}\right)$ transition emitted from energy level 1310.6 KeV .

4- The $547.5 \mathrm{KeV}\left(\frac{9^{+}}{2}-\frac{11^{+}}{2}\right)$ transition emitted from energy level 1380.5 KeV .

Because there are no pure transition emitted from these levels in the calculations of the weighted average of $\rho_{\mathrm{o}}^{2}\left(\mathrm{I}_{\mathrm{i}}\right)$, but they are considered to be pure.

The disagreement is also in the following:
1- The $895.4 \mathrm{KeV}\left(\frac{7^{+}}{2}-\frac{5^{+}}{2}\right)$ transition emitted from energy level 1219.9 KeV .

2- The $583.2 \mathrm{KeV}\left(\frac{7^{-}}{2}-\frac{5^{-}}{2}\right)$ transition and $916.0 \mathrm{KeV}\left(\frac{7^{-}}{2}-\frac{5^{+}}{2}\right)$
transition both of them emitted from the same energy level 1240.5 KeV .
In cases 1 and 2 the δ-values are acceptable with δ-values of CST method due to overlapping within the error between them, but the discrepancy occurs between our results and experimental data for these transitions due to statistical approximations of $\rho_{\mathrm{o}}^{2}\left(\mathrm{I}_{\mathrm{i}}\right)$ values.

Conclusions

1- The CST, a_{2}-Ratio and LSF methods have been applied for the first time for the selected reactions in the present work to calculate the δ values of γ-transitions. The comparison of these values with the experimental data. Generally, they show a good agreement, and providing a good estimation in comparison with the accuracy between experimental and theoretical (calculated) results.

2- The a_{2}-Ratio method is accurate and simple in calculating the $\delta-$ values for gamma-transitions from levels that have at least two γ transitions one of them is pure or may be considered to be pure transitions, we confirm that the δ-values obtained by using this method are independent neither on the energy of level, nor on its parity.
3- The LSF method has been used to calculate $\rho_{o}^{2}\left(I_{i}\right)$ for each initial state in the nuclear reaction of the present work, so that we get an equation for each $\left(\mathrm{I}_{\mathrm{i}}\right)$ instead of one equation for each nuclear reaction. The results were in good agreement as good as (CST) and a_{2}-Ratio methods. The smallest value of $\left(\chi^{2}\right)$ was chosen from these equations.

References

[1] Shirokov Yu. M. and Yudin N. P. "Nuclear physics", Mir Pub. Moscow, Vol. 1, pp. 286-300(1982).
[2] Youhana H. M., Ph.D. Thesis, University of Manchester (1974).
[3] Huby R., Proc. Phys. Soc. A, Vol. 67, p. 1103 (1954).
[4] Lange J., Kumar K. and Hamilton J. H., Rev. of Modern Phys., Vol. 54, pp. 119-122 (1982).
[5] Warner D. D., Gill R. L., Gasten R. F., Brenner D. S., and Walters W.
B., Phys. Lett., B, Vol. 118, p. 251 (1988).
[6]Rose M. E., Phys. Rev., Vol. 91, p. 610 (1953).
[7] Rose H. J. and Brink D. M, Mod. Phys., Vol. 39, p. 306 (1967).
[8] Krane K. S., Atomic data and nuclear data tables, Vol. 25, p. 29 (1980).
[9] Berthier B. and Berthoumieu E., Nucl. Inst. Meth. Phys. Research Sec
B. Beam interaction with materials and atomic, Vol. 130, p. 224 (1997).
[10] Youhana H. M., Ibn Al-Haitham J. Appl. Sci., Vol. 14, A, p. 45 (2001).
[11] Pollti A. R. and Warburton E. K., Phys. Rev. C, Vol. 137, p. 595 (1965).
[12] Hamilton W. D., "The electromagnetic interaction in nuclear spectroscopy", North-Holland Co., pp. 517-773 (1975).
[13] Sheldon E. and Rogers V., Phys. Rev. C., Vol. 6, p. 119 (1973).
[14] Krane K. S., Atomic data and nuclear data tables, Vol. 16, p. 383 (1975).
[15] Meyerhof W. E., "Element of nuclear physics", McGraw-Hill, pp. 120-122 (1967).
[16] Ionesecsu V. A., Kern J., Nordannc C., and Olrich S.: Nucl. Ins and Meth., Vol. 190, p. 19 (1981).
[17] Kajrys G., Landsberger S., Lecoumte R., Paradis P. and Monaro S., Phys. Rev. C, Vol. 26, pp. 1451-1467 (1982).

