Common Random Fixed Points of Commuting Random Operators

Saheb K.Alsaidy

Department of Mathematics, college of Science, AL-Mustansirya University Dr.sahebk@yahoo.com

Salwa Salman Abed

Department of Mathematics, college of Pure Sciences, Ibn AL-Haithem, Baghdad University <u>salwaalbundi@yahoo.com</u> Yusra Jarallah Ajeel

Department of Mathematics, college of Science, AL-Mustansirya University <u>Vsrajara@yahoo.com</u>

Abstract:

In this paper ,we prove three common random fixed point theorems for commuting operators h-nonexpansive and continuous operators defined on a non-starshaped subset of a p-normed space *X*. Also hypotheses conclude compactness condition , demi-closeness or Opial condition.

Keywords: p-normed spaces, common random fixed point, random best approximation.

النقاط الصامدة العشوائية المشتركة لمؤثرات عشوائية إبداليه

المستخلص

في هذا البحث نثبت ثلاث مبرهنات للنقطة الصامدة العشوائية المشتركة لمؤثرات h-لاممتدة ومستمرة إبداليه معرفة على مجموعة جزئية غير نجمية من فضاء p-المعياري كذلك الفرضيات تتضمن شرط التراص و demi-الانغلاق وشرط Opial .

1. Introduction and Preliminaries

The random fixed point theorems for contraction mappings in separable complete metric space were proved by Spacek [22], Han's [4,5]. Recently, many researchers are interested in this subject as Bharucha-Reid[2], Itoh[8] proved several random fixed point theorems and gave their applications to random differential equations in Banach spaces. Nashine [14] establishes the existence of random fixed point as random best approximations with respect to compact and weakly compact domain .

In this paper, we prove some random common fixed point theorems for hnonexpansive random operators defined on non-star-shaped subset of a pnormed space, which extending the previous work by Nashine [15].

The following classes are needed:

 2^X is the classes of all subsets of X,

CB(X) is the classes of all bounded closed subsets of X,

K(X) is the classes of all nonempty compact subsets of X,

 $K_w(X)$ is the classes of all nonempty weakly compact subsets of X,

 \overline{A} is the closure of a set A,

 $w-\overline{(A)}$ is the weakly closure of a set A.

We need the following definitions and facts:

Definition (1.1):[14]

Let X be a linear space and $\|\|_p$ be a real valued function on X with $0 . The pair (X, <math>\|\|\|_p$) is called a p-normed space if for all x, y in X and scalars λ :

i. $||x||_p \ge 0$ and $||x||_p = 0$ iff x = 0ii. $||\lambda x||_p = |\lambda|^p ||x||_p$ iii. $||x + y||_p \le ||x||_p + ||y||_p$

JOURNAL OF COLLEGE OF EDUCATION 2017..... NO1

Every p-normed space X induces a metric space with $d(x, y) = \|x - y\|_p$, for all x, y in X. If p = 1, we have the concept of a normed space. Since a p-normed space is not necessarily locally convex space then continuous dual X of p-normed space X need not separate the point of X.

Definition (1.2):[13]

The space X is said to be **Opial** if for every sequence $\langle x_n \rangle$ in X , $x_n \rightarrow x$ weakly as $n \rightarrow \infty$ and $x \neq y$ implying that

 $\lim_{n \to \infty} \inf \left\| x_n - x \right\|_p \le \lim_{n \to \infty} \inf \left\| x_n - y \right\|_p, \text{ for all } y \in X.$

Definition (1.3):[21]

Let X be a p-normed space, A subset A of X is called **starshaped** if there exists a point $q \in A$ such that $\lambda x + (1 - \lambda)q \in A$ for all $x \in A$ and $0 \le \lambda$ in this case q is called the starcenter of .

Definition (1.4): [23]

A self mapping *h* of a p-normed space *X* is said to be **affine** if for all *x*, *y* in *X* and for any λ , $0 \le \lambda \le 1$, $h(\lambda x + (1 - \lambda) y) = \lambda hx + (1 - \lambda) hy$. And *h* is called *q*-affine if there is $q \in X$ such that $h(kx + (1 - k)q) = \lambda hx + (1 - \lambda)q$, for all $\lambda \in [0,1]$ and all $\in X$.

Definition (1.5): [14]

Let *A* be a subset of a p-normed space *X* for $x_{\circ} \in X$, define the set $p_A(x_{\circ}) = \{z \in A : ||x - z||_p = d(x, A)\}$, then an element $z \in p_A(x_{\circ})$ is called a **best approximation** of x_{\circ} in *A*.

Definition (1.6): [13]

Let X be a p-normed space, $A \subseteq X$ and $G : A \to X$ be a mapping, G is called *demiclosed* of $x \in A$, if for every sequence $\langle x_n \rangle$ in A such that x_n weakly converges to $x (x_n \to x)$ and $G(x_n)$ converges to $y \in X$ $(G(x_n) \to y)$ then y = G(x). And G is demiclosed on A if it is demiclosed of each x in A.

Definition (1.7): [13]

Let *X* be a p-normed space and $h, G: X \to X$ be a mapping then *G* is said to be *h-contraction* if there exists $k \in [0,1]$ such that

 $||Gx - Gy||_p \le k ||hx - hy||_p \dots (2.1)$ for all x, y in X

If k = 1 in (2. 1), then G is called **h** - nonexpansive mapping.

Definition (1.8): [13]

A pair (h, G) of self mappings of a metric space X is said to be **Commute** if hGx = Ghx for all $x \in X$.

Throughout this paper the order pair (Ω, Σ) denote to the measurable space with sigma algebra Σ of subsets of Ω .

Definition(1.9):[20]

A mapping $F: \Omega \to 2^X$ is called measurable (or, weakly measurable) if, for any closed (respectively,open) subset B of X, $F^{-1}(B) = \{\omega \in \Omega: F(\omega) \cap B \neq \emptyset\} \in \Sigma$.

Definition (1.10): [17]

A mapping $\delta: \Omega \to X$ is called a measurable selector of a measurable mapping $F:\Omega \to 2^X$ if δ measurable and $\delta(\omega) \in F(\omega)$ for each $\omega \in \Omega$.

Definition (1.11):[9]

A mapping $h: \Omega \times X \to X$ (or a multivalued $G: \Omega \times X \to CB(X)$) is called a random operator if for any $x \in X$, h(., x) (respectively G(., x)) is measurable.

Definition (1.12):[18]

A measurable mapping $\delta: \Omega \to A$ is called random fixed point of a random operator $h: \Omega \times X \to X$ (or a multivalued $G: \Omega \times X \to CB(X)$ if for every $\omega \in \Omega$, $\delta(\omega) = h(\omega, \delta(\omega))$ (respectively $\delta(\omega) \in G(\omega, \delta(\omega))$).

Definition (1.13):[1]

A measurable mapping $\delta: \Omega \to A$ is called common random fixed point of a random operator $h: \Omega \times A \to X$ and $G: \Omega \times A \to A$ if for all $\omega \in \Omega$

 $\delta(\omega) = h(\omega, \delta(\omega)) = G(\omega, \delta(\omega)).$

Definition (1.14):[19]

A random operator $h: \Omega \times A \to X$ is called continuous (weakly continuous) if for each $\omega \in \Omega$, $h(\omega, .)$ is continuous (weakly continuous).

Definition (1.15):[16]

Let X be a p-normed space a random operator, $G: \Omega \times X \to X$ is *h*-**nonexpansive** if for each $\omega \in \Omega$, $G(\omega, .)$ is $h(\omega, .)$ - nonexpansive.

Definition (1.16): [18]

A random operator $h: \Omega \times X \to X$ is said to be **affine** if for each $\omega \in \Omega$, $h(\omega, .): X \to X$ is affine.

Definition (1.17):[15]

Let *X* be a metric space . A random operators $h, G: \Omega \times X \longrightarrow X$ are said to be **commute** if $h(\omega, .)$ and $G(\omega, .)$ are commute for each $\omega \in \Omega$.

In the following we give a generalization for starshaped properties for $\emptyset \neq A \subseteq X$.

Definition (1.18):

Let X be a p-normed space, $A \subseteq X$ and $G: \Omega \times X \to X$ be a random operator we say that A has property (a_1) if

i. $G: \Omega \times A \to A$

ii. $(1 - k_n)q + k_n G(\omega, x) \in A$, for some $q \in A$ and a fixed real sequence $\langle k_n \rangle$ converging to 1 and for each $x \in A$ and for each $\omega \in \Omega$.

<u>Remark(1.19)</u>:

Any q-starshaped set has the property (a_1) w.r.t any random operator : $\Omega \times A \rightarrow A$, but the converse is not true in general.

In the following we give a generalization for affine properties for random operator

Definition (1.20):

Let X be a p-normed space, $A \subseteq X$ and A has property (a_1) w.r.t a random operator $G: \Omega \times X \to X$, $q \in A$ and sequence $\langle k_n \rangle$. A random operator $h: \Omega \times X \to X$ is said to be have property (a_2) on A with property (a_1) if

$$h(\omega, (1 - k_n)q + k_n G(\omega, x)) = (1 - k_n) h(\omega, q) + k_n h(\omega, G(\omega, x))$$

for all $x \in A$ and $n \in N$ and $\omega \in \Omega$.

2. Random Common Fixed Point

<u>Theorem (2.1)</u>:[15]

Let X be a compact metric space. Let $h, G: \Omega \times X \to X$ be two commuting random operators such that $G(\omega, X) \subseteq h(\omega, X)$ for all $\omega \in \Omega$. If h is continuous and

 $d(G(\omega, x), G(\omega, y)) \le d(h(\omega, x), h(\omega, y))$ for each $x, y \in X$ and each $\omega \in \Omega$ whenever $h(\omega, x) \ne h(\omega, y)$, then h and G have a common random fixed point.

Now , by using Theorem (2.1) we prove the following :

<u>Theorem(2.2)</u>:

Let *A* be a nonempty compact subset of a p-normed space . Let $h: \Omega \times X \to X$ be a continuous random operator and has property (a_2) with $h(\omega, A) = A$ and $h(\omega, q) = q$ for all $\omega \in \Omega, G: \Omega \times X \to X$ be an *h*-nonexpansive random operator commute with *h*. If A has property (a_1) w.r.t *G* and *G* is continuous random operator, then h and G have a common random fixed point.

Proof :

Since A has property (a_1) w.r.t, then $(1 - k_n)q + k_n G(\omega, x) \in A$, for some $q \in A$ and a fixed real sequence $< k_n >$ converging to 1 ($0 < k_n < 1$), for all $x \in A$ and for all $\omega \in \Omega$. For each $n \ge 1$, defined the random operators G_n by $G_n(\omega, x) = (1 - k_n)q + k_n G(\omega, x)$, for all $x \in A$ and all $\omega \in \Omega$. It is clear that, $G_n : \Omega \times A \to A$. Since $G_n(\omega, A) \subseteq A = h(\omega, A)$, then $G_n(\omega, A) \subseteq h(\omega, A)$ for all $\omega \in \Omega$. Since G commute with h, h has property (a_2) and $h(\omega, q) = q$ for all $\omega \in \Omega$ then for each $x \in A$ and all $\omega \in \Omega$.

$$G_n(\omega, h(\omega, x)) = (1 - k_n)q + k_n G(\omega, h(\omega, x))$$

= $(1 - k_n)h(\omega, q) + k_n h(\omega, G(\omega, x))$
= $h(\omega, (1 - k_n)q + k_n G(\omega, x))$
= $h(\omega, G_n(\omega, x))$

Therefore each G_n is commute with h.

Since G is h -nonexpansive, then

$$\begin{aligned} \left\| G_n(\omega, x) - G_n(\omega, y) \right\|_p \\ &= \left\| (1 - k_n)q + k_n G(\omega, x) - (1 - k_n)q - k_n G(\omega, y) \right\|_p \\ &= \left\| k_n \right\|^p \left\| G(\omega, x) - G(\omega, y) \right\|_p \\ &\leq \left\| k_n \right\|^p \left\| h(\omega, x) - h(\omega, y) \right\|_p \\ &< \left\| h(\omega, x) - h(\omega, y) \right\|_n \end{aligned}$$

For all $x, y \in A$ and all $\omega \in \Omega$, thus each G_n is a random h-nonexpansive. Hence, by theorem (2.1), there is a common random fixed point $\delta_n \colon \Omega \to A$ of G_n and h such that $\delta_n(\omega) = h(\omega, \delta_n(\omega)) = G_n(\omega, \delta_n(\omega))$. For each n define $Q_n \colon \Omega \to k(A)$ by $Q_n(\omega) = \overline{\{\delta_i(\omega) \colon i \geq n\}}$, Define $Q \colon \Omega \to k(A)$ by $Q(\omega) = \bigcap_{n=1}^{\infty} Q_n(\omega)$.

so *Q* is measurable [7] and *Q* has measurable selector $\delta: \Omega \to A$ [12].

Since A is compact and $\{ \delta_n(\omega) \}$ sequence in A Then there is a subsequence $\{ \delta_m(\omega) \}$ of $\{ \delta_n(\omega) \}$ converges to $\delta(\omega)$. Having $\delta_m(\omega) = G_m(\omega, \delta_m(\omega)) = h(\omega, \delta_m(\omega))$. As h and G are continuous and $k_n \to 1$, we have $G_m(\omega, \delta_m(\omega))$ converges to $G(\omega, \delta(\omega))$ and $h(\omega, \delta_m(\omega))$ converges to $h(\omega, \delta(\omega))$. Consequently

$$\lim_{m \to \infty} \delta_m(\omega) = \lim_{m \to \infty} G_m(\omega, \delta_m(\omega)) = \lim_{m \to \infty} h(\omega, \delta_m(\omega))$$
$$\delta(\omega) = G(\omega, \delta(\omega)) = h(\omega, \delta(\omega))$$

Hence $\delta: \Omega \to A$ is a common random fixed point of *h* and *G*.

As a consequence of theorem (2.2) we have the following

Corollary (2.3):

Let *A* be a nonempty compact subset of a p-normed space . Let $h: \Omega \times X \to X$ be a continuous random operator and has property (a_2) with $h(\omega, A) = A$ and $h(\omega, q) = q$ for all $\omega \in \Omega, G: \Omega \times X \to X$ be an *h*-nonexpansive random operator commute with *h*. If A is q-starshaped and *G* is continuous random operator, then h and G have a common random fixed point.

Theorem(2.4):

Let *A* be a nonempty separable weakly compact subset of a complete p-normed space . Let $h: \Omega \times X \to X$ be a continuous and weakly continuous random operator and has property (a_2) with $h(\omega, A) = A$ and $h(\omega, q) = q$ for all $\omega \in \Omega$, $G: \Omega \times X \to X$ be an *h*-nonexpansive random operator commute with *h*. If *A* has property (a_1) w.r.t G , and $(h - G)(\omega, .)$ is demiclosed at zero for all $\omega \in \Omega$, then *h* and *G* have a common random fixed point .

Proof :

Since A has property (a_1) w.r.t, then

JOURNAL OF COLLEGE OF EDUCATION 2017..... NO1

 $(1 - k_n)q + k_n G(\omega, x) \in A$, for some $q \in A$ and a fixed real sequence $\langle k_n \rangle$ converging to 1 ($0 < k_n < 1$), for all $x \in A$ and for all $\omega \in \Omega$. For each $n \ge 1$, defined the random operators G_n by $G_n(\omega, x) = (1 - k_n)q + k_n G(\omega, x)$, for all $x \in A$ and all $\omega \in \Omega$. It is clear that, $G_n : \Omega \times A \to A$. Since $G_n(\omega, A) \subseteq A = h(\omega, A)$, then $G_n(\omega, A) \subseteq h(\omega, A)$ for all $\omega \in \Omega$. Since G commute with h, h has property (a_2) and $h(\omega, q) = q$ for all $\omega \in \Omega$ then for each $x \in A$ and all $\omega \in \Omega$.

$$G_n(\omega, h(\omega, x)) = (1 - k_n)q + k_n G(\omega, h(\omega, x))$$

= $(1 - k_n)h(\omega, q) + k_n h(\omega, G(\omega, x))$
= $h(\omega, (1 - k_n)q + k_n G(\omega, x))$
= $h(\omega, G_n(\omega, x))$

Therefore each G_n is commute with h.

Since G is h-nonexpansive, then

$$\begin{aligned} \left\| G_n(\omega, x) - G_n(\omega, y) \right\|_p \\ &= \left\| (1 - k_n)q + k_n G(\omega, x) - (1 - k_n)q - k_n G(\omega, y) \right\|_p \\ &= \left\| k_n \right\|_p^p \left\| G(\omega, x) - G(\omega, y) \right\|_p \\ &\leq \left\| k_n \right\|_p^p \left\| h(\omega, x) - h(\omega, y) \right\|_p \\ &< \left\| h(\omega, x) - h(\omega, y) \right\|_p \end{aligned}$$

For all $x, y \in A$ and all $\omega \in \Omega$, thus each G_n is a random h -nonexpansive. Since A is separable and weakly compact ,then the weak topology on A is a metric topology[3] which implies that A is hausdorff [10] then A is strongly closed, this implies A is a complete metric space [11] Thus all the conditions of Theorem (2.1) are satisfied.

Hence there is a common random fixed point $\delta_n: \Omega \to A$ of G_n and h such that $\delta_n(\omega) = h(\omega, \delta_n(\omega)) = G_n(\omega, \delta_n(\omega))$.

Now, for each n define $Q_n: \Omega \to k_w(A)$ by $Q_n(\omega) = w - \overline{\{\delta_\iota(\omega): \iota \ge n\}}$.

Define $Q: \Omega \to k_w(A)$ by $Q(\omega) = \bigcap_{n=1}^{\infty} Q_n(\omega)$.

Since *A* is complete p-normed space ,then *Q* is weakly measurable[7] so *Q* has measurable selector $\delta: \Omega \to A$ [12].

By weak compactness of A , we have that a subsequence $\{\delta_m(\omega)\}$ of $\{\delta_n(\omega)\}$ converges weakly to $\delta(\omega)$.

Having $\delta_m(\omega) = G_m(\omega, \delta_m(\omega)) = h(\omega, \delta_m(\omega)).$

Now , from weakly continuity of h , we have

$$h(\omega, \delta(\omega)) = h\left(\omega, \lim_{m \to \infty} \delta_m(\omega)\right) = \lim_{m \to \infty} h(\omega, \delta_m(\omega)) = \lim_{m \to \infty} \delta_m(\omega)$$
$$= \delta(\omega)$$

Hence $h(\omega, \delta(\omega)) = \delta(\omega)$.

Since
$$G(\omega, \delta_m(\omega)) = \frac{G_m(\omega, \delta_m(\omega)) - (1 - k_m)q}{k_m}$$
 and $\delta_m(\omega) = h(\omega, \delta_m(\omega)) = k(\omega, \delta_m(\omega))$

$$G_{m}(\omega, \delta_{m}(\omega)), \text{ we have}$$

$$(h - G)(\omega, \delta_{m}(\omega)) = h(\omega, \delta_{m}(\omega)) - G(\omega, \delta_{m}(\omega))$$

$$= \delta_{m}(\omega) - \frac{G_{m}(\omega, \delta_{m}(\omega)) - (1 - k_{m})q}{k_{m}}$$

$$= \frac{\delta_{m}(\omega)k_{m} - G_{m}(\omega, \delta_{m}(\omega)) + (1 - k_{m})q}{k_{m}}$$

$$= \frac{\delta_{m}(\omega)k_{m} - \delta_{m}(\omega) + (1 - k_{m})q}{k_{m}}$$

$$= \frac{-\delta_{m}(\omega)(1 - k_{m}) + (1 - k_{m})q}{k_{m}}$$

$$= \frac{(1 - k_{m})(q - \delta_{m}(\omega))}{k_{m}}$$

Therefore, $(h-G)(\omega, \delta_m(\omega)) = \left(\frac{1}{k_m} - 1\right)(q - \delta_m(\omega))$

Thus $\left\|(h-G)(\omega,\delta_m(\omega))\right\|_p = \left|\frac{1}{k_m} - 1\right|^p \left\|(q-\delta_m(\omega))\right\|_p \le$

 $\left|\frac{1}{k_m} - 1\right|^p \left[\|\delta_m(\omega)\|_p + \|q\|_p \right]$

Since A is bounded by A is weakly compact, and $\delta_m(\omega) \in A$ implies $\langle \|\delta_m(\omega)\|_p \rangle$ is bounded and so by the fact that $k_m \to 1$, we have

$$\|(h-G)(\omega, \delta_m(\omega))\|_p \to 0$$

Since $\delta_m(\omega) \to \delta(\omega)$, then $\delta_m(\omega) \to \delta(\omega)$.
Since $\delta_m(\omega) \to \delta(\omega)$, $(h-G)(\omega, \delta_m(\omega)) \to 0$ and $(h-G)(\omega, .)$ is
demiclosed at 0, then $(h-G)(\omega, \delta(\omega)) = 0$
This implies $h(\omega, \delta(\omega)) - G(\omega, \delta(\omega)) = 0$
Hence $h(\omega, \delta(\omega)) = G(\omega, \delta(\omega))$
Thus $h(\omega, \delta(\omega)) = G(\omega, \delta(\omega)) = \delta(\omega)$.
Therefore $\delta: \Omega \to A$ is a common random fixed of h and G.

=

As a special case of theorem (2.4) we have the following

Corollary (2.5):

Let *A* be a nonempty separable weakly compact subset of a complete p-normed space . Let $h: \Omega \times X \to X$ be a continuous and weakly continuous random operator and has property (a_2) with $h(\omega, A) = A$ and $h(\omega, q) = q$ for all $\omega \in \Omega$, $G: \Omega \times X \to X$ be an *h*-nonexpansive random operator commute with *h*. If *A* is q-starshaped, and $(h - G)(\omega, .)$ is demiclosed at zero for all $\in \Omega$, then *h* and *G* have a common random fixed point.

Another common random fixed point theorem will be given for opial's spaces :

Theorem(2.6):

Let *A* be a nonempty separable weakly compact subset of a complete p-normed opial space X. Let $h: \Omega \times X \to X$ be a continuous and weakly continuous random operator and has property (a_2) with $h(\omega, A) = A$ and $h(\omega, q) = q$ for all $\omega \in \Omega$,

 $G: \Omega \times X \to X$ be an *h*-nonexpansive random operator commute with h. If A has property (a_1) w.r.t G, then h and G have a common random fixed point.

Proof :

As in theorem (2.4),
$$h(\omega, \delta(\omega)) = \delta(\omega)$$
 and $||(h - G)(\omega, \delta_m(\omega))||_p \to 0$
As $\to \infty$.
Now, since X is opial space, if $h(\omega, \delta(\omega)) \neq G(\omega, \delta(\omega))$, then

$$\lim_{m \to \infty} \inf ||h(\omega, \delta_m(\omega)) - h(\omega, \delta(\omega))||_p$$

$$< \lim_{m \to \infty} \inf ||h(\omega, \delta_m(\omega)) - G(\omega, \delta(\omega)) - G(\omega, \delta_m(\omega) + G(\omega, \delta_m(\omega))|_p$$

$$\leq \lim_{m \to \infty} \inf ||h(\omega, \delta_m(\omega)) - G(\omega, \delta_m(\omega))|_p + \lim_{m \to \infty} \inf ||G(\omega, \delta_m(\omega))|_p$$

$$= G(\omega, \delta(\omega))||_p$$

Since G is h-nonexpansive and $||h(\omega, \delta_m(\omega)) - G(\omega, \delta_m(\omega))|_p \to 0$, then

$$\lim_{m \to \infty} \inf f \| h(\omega, \delta_m(\omega)) - h(\omega, \delta(\omega)) \|_p$$

<
$$\lim_{m \to \infty} \inf \| h(\omega, \delta_m(\omega)) - h(\omega, \delta(\omega)) \|_p \text{ which is contraction .}$$

Hence $(\omega) = h(\omega, \delta(\omega)) = G(\omega, \delta(\omega))$.

Therefore $\delta: \Omega \to A$ is a common random fixed of h and G.

As a consequence of theorem (2.6) we have the following

Corollary(2.7):

Let *A* be a nonempty separable weakly compact subset of a complete p-normed opial space. Let $h: \Omega \times X \to X$ be a continuous and weakly continuous random operator and has property (a_2) with $h(\omega, A) = A$ and $h(\omega, q) = q$ for all $\omega \in \Omega$, $G: \Omega \times X \to X$ be an h-nonexpansive random operator commute with h. If A is q-starshaped then h and G have a common random fixed point.

3.Random Best Approximation

The following lemma is needed:

Lemma (3.1):[6]

Let A be a subset of a p-normed space . Then, for any $x \in X$, $P_A(x) \subseteq \partial A$ (the boundary of A).

As an application of Theorem (2.2), (2.4) and (2.6), we have the following result on random best approximation .

<u>Theorem (3.2)</u>:

Let *X* be a p-normed space. Let $h, G: \Omega \times X \to X$ be two random operators and *A* a nonempty subset of *X* such that $G(\omega, .): \partial A \to A$ and $x_\circ = h(\omega, x_\circ) = G(\omega, x_\circ)$ for all $\omega \in \Omega$. Let $P_A(x_\circ)$ be a nonempty has property (a_1) w.r.t *G* with $h(\omega, q) = q$ and $h(\omega, P_A(x_\circ)) = P_A(x_\circ)$ for all $\omega \in \Omega$ and let *G* is *h* -nonexpansive random operator and *h* has property (a_2) , continuous on $P_A(x_\circ)$ and $h(\omega, G(\omega, x)) = G(\omega, h(\omega, x))$ for all $x \in P_A(x_\circ)$ and all $\omega \in \Omega$ then there exists a measurable map $\delta: \Omega \to$ $P_A(x_\circ)$ such that $\delta(\omega) = h(\omega, \delta(\omega)) = G(\omega, \delta(\omega))$ for each $\omega \in \Omega$ if one of the following conditions is satisfied :

- i. $P_A(x_\circ)$ is compact and G is continuous on $P_A(x_\circ) \cup \{x_\circ\}$;
- P_A(x_◦) is separable weakly compact subset of a complete p-normed space X , h weakly continuous random operator , (h − G)(ω,.) is demiclosed at zero for all ω ∈ Ω;
- iii. $P_A(x_\circ)$ is separable weakly compact subset of a complete p- normed space X, h weakly continuous random operator and X is opial space.

Proof :

Let $= P_A(x_\circ)$, $y \in M$, since $h(\omega, M) = M$ for all $\omega \in \Omega$, so $h(\omega, y) \in M$. Also by lemma (3.1) $\in \partial A$. As $G(\omega, .): \partial A \to A$ for all $\in \Omega$, it follows that $G(\omega, y) \in A$. Since $G(\omega, x_\circ) = x_\circ$ and G is a h-nonexpansive random operator, thus

 $\|G(\omega, y) - x_{\circ}\|_{p} = \|G(\omega, y) - G(\omega, x_{\circ})\|_{p} \le \|h(\omega, y) - h(\omega, x_{\circ})\|_{p}$ As $h(\omega, x_{\circ}) = x_{\circ}$ and $h(\omega, y) \in M$, $||G(\omega, y) - x_{\circ}||_{p} \le ||h(\omega, y) - x_{\circ}||_{p} = d_{p}(x_{\circ}, A)$

Since $G(\omega, y) \in A$ we have $(\omega, y) \in M$. Thus $G: \Omega \times P_A(x_\circ) \to P_A(x_\circ)$.

Hence the result follows by Theorem (2.2),(2.4) and (2.6) respectively.■

As a consequence of theorem(3.2) we get

Corollary (3.3):

Let X be a p-normed space. Let $h, G: \Omega \times X \to X$ be two random operators and A a nonempty subset of X such that $G(\omega, .): \partial A \to A$ and $x_\circ = h(\omega, x_\circ) = G(\omega, x_\circ)$ for all $\omega \in \Omega$. Let $P_A(x_\circ)$ be a nonempty qstarshaped with $h(\omega, q) = q$ and $h(\omega, P_A(x_\circ)) = P_A(x_\circ)$ for all $\omega \in \Omega$ and let G is h -nonexpansive random operator and continuous on $P_A(x_\circ) \cup$ $\{x_\circ\}$ where h has property (a_2) , continuous on $P_A(x_\circ)$ and $h(\omega, G(\omega, x)) =$ $G(\omega, h(\omega, x))$ for all $x \in P_A(x_\circ)$ and all $\omega \in \Omega$ then there exists a measurable map $\delta: \Omega \to P_A(x_\circ)$ such that $\delta(\omega) = h(\omega, \delta(\omega)) =$ $G(\omega, \delta(\omega))$ for each $\omega \in \Omega$ if one of the following conditions is satisfied :

i. $P_A(x_\circ)$ is compact and G is continuous on $P_A(x_\circ) \cup \{x_\circ\}$;

- ii. $P_A(x_\circ)$ is separable weakly compact subset of a complete p-normed space X, h weakly continuous random operator $(h - G)(\omega, .)$ is demiclosed at zero for all $\omega \in \Omega$;
- iii. $P_A(x_\circ)$ is separable weakly compact subset of a complete p- normed space X, h weakly continuous random operator and X is Opial space.

Remark (3.4):

All Theorems and Corollaries in this paper are true for one random operator by taking h = I (is the identity random operator).

References

- 1. Beg, I.,Jahangir,A., and Azam,A.,"Random coincidence and fixed points for weakly compatible mappings in convex metric spaces", Asian-European J.Math. Vol.2 (2),(2009),PP.(171-182).
- 2. Bharucha-Reid, A.T." Fixed point theorems in probabilistic analysis", Bull. Amer .Math .Soc .Vol.82(5),(1976).
- 3. Dunford, A., and Schwartz, J.T,"Linear operators", part I Interscience, New York.(1958).
- Hanš, O.," Random operator equations", Proceedings of 4th Berkeley Sympos. Math. Statist. and Prob., Vol.II. University of California, Part I,(1961), PP.(185-202).
- 5. Hanš, O.," Reduzierende zufallige transformationen", Czechoslovak Math .Journal .Vol.7(82) ,(1957), PP.(154-158).
- Hicks, T.L., Humphries, M.D., "A Note on Fixed Point Theorems", J. Approx. Theory, Vol. 34, (1982), PP.(221-225).
- 7. Himmelberg,C.J.,"Measurable relations",Fund.Math.Vol.87,(1975),PP. (53-72).
- Itoh, S., "Random fixed point theorems with an applications to random differential equations in Banach spaces", J. Math. Anal .Appl .Vol.67,(1979),PP.(261-273).
- Jhadd¹,P. K., and Salua²,A.S., "On random coincidence and fixed points for a pair of multi-valued and single-valued mappings " J. Anal .Appl.Vol.4(1), (2014), PP.(26-35).
- 10.Körner ,T.W., "Metric and topological "Janyary 19,2015.
- 11.Kreyszig ,E., " Introductory functional analysis with applications "University of Windsor (1978).
- 12.Kuratowski, K., and Ryll, N., "A general theorem on selectors", Bull.Acad.Polon.Sci.Ser.Sci.Math.Astronom.Phys.vol.13,(1965), PP.(397-403).
- 13.Latif, A., "A Result on Best Approximation in p-Normed Spaces", Arch. Math. (Brno), Vol. 37, (2001), PP.(71-75).
- 14.Nashine, H.K., "Random fixed points and invariant random approximation in non-convex domains", Hacettepe

JOURNAL OF COLLEGE OF EDUCATION 2017..... NO1

J.Math.Stat.vol.37(2),(2008),PP.(81-88).

- 15.Nashine, H.K., "Common random fixed point and random best approximation", Thai J.Math. Vol.3(1),(2005), PP.(63-70).
- 16.Nashine, H.K., "Random approximation for non-commuting random operators in q-normed spaces"Random operators /Stochastic Eqs. Vol.16,(2008), PP(383-397).
- 17.Rashwan,R.A., and Albaqeri,D.M., "Random coincidence and fixed point theorem for hybrid maps in separable metric spaces", Int.J.Open Problems Compute.Math., Vol.6(1), (2013), PP.(103-114).
- 18.Shahzad, N., and Latif, A.," Note a random coincidence point theorem", J.Math. Anal.Appl.Vol.245,(2000),PP.(633-638).
- 19.Shahzad, N., "Some general random coincidence point theorems ", New Zealand J.Math.Vol.33, (2004), PP. (95-103).
- 20.Shrivastava,R., Nashine,H.K., and Dewangan,C.L.,"Invariant random approximation in non-convex domain", J.Indones. Math. Soc. (Mihmi)., Vol.15(2),(2009),PP.(69-77).
- 21.Singh,S.P.,Watson,B., and Srivastava,P.,"Fixed point theory and best approximation:The KKM-Map Principle",Vol.424,Kluwer Academic Publishers ,(1997).
- 22. Špaček, A.Zufallige Gleichungen, Czechoslovak Mathematical Journal Vol.5(80),(1955),PP.(462-466).
- 23. Zeidler, E., "Non Linear Functional Analysis and Applications, I. Fixed Point Theorems", Springer Verlage, New York, Inc,(1986).