Common Random Fixed Points of Commuting Random Operators

Saheb K.Alsaidy
Department of Mathematics, college of Science, AL-Mustansirya University
Dr.sahebk@yahoo.com

Salwa Salman Abed

Department of Mathematics, college of Pure Sciences, Ibn AL-Haithem, Baghdad
University
salwaalbundi@yahoo.com
Yusra Jarallah Ajeel
Department of Mathematics, college of Science, AL-Mustansirya University
Ysrajara@yahoo.com

Abstract:

In this paper, we prove three common random fixed point theorems for commuting operators h-nonexpansive and continuous operators defined on a non-starshaped subset of a p-normed space X. Also hypotheses conclude compactness condition, demi-closeness or Opial condition.
Keywords: p-normed spaces, common random fixed point, random best approximation.

$$
\begin{aligned}
& \text { النقاط الصامدة العشوائية المشتركة لمؤثرات عشوائية إبداليه } \\
& \text { د.صاحب كحيط الساعدي } \\
& \text { الجامعة المستنصرية, كلية العوم, قسم الرياضيات } \\
& \text { د.سلوى سلمان عبد } \\
& \text { جامعة بغداد, كلية التربية ابن الهيثڤ, قسم الرياضيات } \\
& \text { يسرى جارالله عجيل } \\
& \text { الجامعة المستنصرية, كلية العلوم, قسم الرياضيات }
\end{aligned}
$$

1.Introduction and Preliminaries

The random fixed point theorems for contraction mappings in separable complete metric space were proved by Spacek [22], Han's [4,5]. Recently, many researchers are interested in this subject as Bharucha-Reid[2], Itoh[8] proved several random fixed point theorems and gave their applications to random differential equations in Banach spaces. Nashine [14] establishes the existence of random fixed point as random best approximations with respect to compact and weakly compact domain .

In this paper, we prove some random common fixed point theorems for h nonexpansive random operators defined on non-star-shaped subset of a pnormed space, which extending the previous work by Nashine [15].

The following classes are needed:
2^{X} is the classes of all subsets of X,
$\mathrm{CB}(X)$ is the classes of all bounded closed subsets of X,
$\mathrm{K}(X)$ is the classes of all nonempty compact subsets of X,
$\mathrm{K}_{\mathrm{w}}(X)$ is the classes of all nonempty weakly compact subsets of X,
$\bar{A} \quad$ is the closure of a set A ,
$\mathrm{w}-\overline{(A)}$ is the weakly closure of a set A.
We need the following definitions and facts:

Definition (1.1):[14]

Let X be a linear space and $\left\|\|_{p}\right.$ be a real valued function on X with $0<p \leq 1$. The pair $\left(\mathrm{X},\| \|_{\mathrm{p}}\right)$ is called a p-normed space if for all x, y in X and scalars λ :
i. $\|x\|_{p} \geq 0$ and $\|x\|_{p}=0$ iff $x=0$
ii. $\|\lambda x\|_{p}=|\lambda|^{p}\|x\|_{p}$
iii. $\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}$

Every p-normed space X induces a metric space with $d(x, y)=$ $\|x-y\|_{p}$,for all x, y in X. If $p=1$, we have the concept of a normed space. Since a p-normed space is not necessarily locally convex space then continuous dual X^{\prime} of p -normed space X need not separate the point of X.

Definition (1.2):[13]

The space X is said to be Opial if for every sequence $<x_{n}>$ in X ,$x_{n} \rightarrow x$ weakly as $n \rightarrow \infty$ and $x \neq y$ implying that $\lim _{n \rightarrow \infty}$ inf $\left\|x_{n}-x\right\|_{p} \leq \lim _{n \rightarrow \infty}$ inf $\left\|x_{n}-y\right\|_{p}$, for all $y \in X$.

Definition (1.3):[21]

Let X be a p-normed space, A subset A of X is called starshaped if there exists a point $\mathrm{q} \in A$ such that $\quad \lambda x+(1-\lambda) q \in A$ for all $x \in$ A and $0 \leq \lambda$ in this case q is called the starcenter of .

Definition (1.4): [23]

A self mapping h of a p-normed space X is said to be affine if for all x, y in X and for any $\lambda, 0 \leq \lambda \leq 1, h(\lambda x+(1-\lambda) y)=\lambda h x+(1-\lambda) h y$. And h is called q-affine if there is $q \in X$ such that $h(k x+(1-k) q=$ $\lambda h x+(1-\lambda) q$, for all $\lambda \in[0,1]$ and all $\in X$.

Definition (1.5): [14]

Let A be a subset of a p-normed space X for $x_{\circ} \in X$, define the set $p_{A}\left(x_{0}\right)=\left\{z \in A:\|x-z\|_{p}=d(x, A)\right\}$, then an element $z \in p_{A}\left(x_{0}\right)$ is called a best approximation of x_{\circ} in A.

Definition (1.6): [13]

Let X be a p-normed space, $A \subseteq X$ and $G: A \longrightarrow X$ be a mapping, G is called demiclosed of $x \in A$, if for every sequence $<x_{n}>$ in A such that x_{n} weakly converges to $x\left(x_{n} \rightharpoonup x\right)$ and $G\left(x_{n}\right)$ converges to $y \in X$ $\left(G\left(x_{n}\right) \rightarrow y\right)$ then $y=G(x)$.And G is demiclosed on A if it is demiclosed of each x in A.

Definition (1.7): [13]

Let X be a p-normed space and $h, G: X \rightarrow X$ be a mapping then G is said to be \boldsymbol{h}-contraction if there exists $k \in[0,1]$ such that
$\|G x-G y\|_{p} \leq k\|h x-h y\|_{p} \ldots \ldots \ldots$.(2.1) for all x, y in X
If $k=1$ in (2.1), then G is called \boldsymbol{h}-nonexpansive mapping .

Definition (1.8): [13]

A pair (h, G) of self mappings of a metric space X is said to be
Commute if $h G x=G h x$ for all $x \in X$.
Throughout this paper the order pair (Ω, Σ) denote to the measurable space with sigma algebra Σ of subsets of Ω.
Definition(1.9):[20]
A mapping $F: \Omega \rightarrow 2^{X}$ is called measurable (or, weakly measurable) if, for any closed (respectively,open) subset B of $X, F^{-1}(B)=\{\omega \in$ $\Omega: F(\omega) \cap B \neq \emptyset\} \in \Sigma$.
Definition (1.10): [17]
A mapping $\delta: \Omega \rightarrow X$ is called a measurable selector of a measurable mapping $F: \Omega \rightarrow 2^{X}$ if δ measurable and $\delta(\omega) \in F(\omega)$ for each $\omega \in \Omega$.

Definition (1.11):[9]

A mapping $h: \Omega \times X \rightarrow X$ (or a multivalued $G: \Omega \times X \rightarrow C B(X))$ is called a random operator if for any $x \in X, h(., x)$ (respectively $\mathrm{G}(., x))$ is measurable .

Definition (1.12):[18]

A measurable mapping $\delta: \Omega \rightarrow A$ is called random fixed point of a random operator $h: \Omega \times X \rightarrow X$ (or a multivalued $G: \Omega \times X \rightarrow C B(X)$ if for every $\omega \in \Omega, \delta(\omega)=h(\omega, \delta(\omega))$ (respectively $\delta(\omega) \in G(\omega, \delta(\omega))$.

Definition (1.13):[1]

A measurable mapping $\delta: \Omega \rightarrow A$ is called common random fixed point of a random operator $h: \Omega \times A \rightarrow X$ and $G: \Omega \times A \rightarrow A$ if for all $\omega \in \Omega$
$\delta(\omega)=h(\omega, \delta(\omega))=G(\omega, \delta(\omega))$.

Definition (1.14):[19]

A random operator $h: \Omega \times A \rightarrow X$ is called continuous (weakly continuous) if for each $\omega \in \Omega, h(\omega$, .)is continuous (weakly continuous).

Definition (1.15):[16]

Let X be a p-normed space a random operator, $G: \Omega \times X \rightarrow X$ is \boldsymbol{h} nonexpansive if for each $\omega \in \Omega, G(\omega,$.$) is h(\omega,$.$) - nonexpansive .$

Definition (1.16): [18]

A random operator $h: \Omega \times X \rightarrow X$ is said to be affine if for each $\omega \in \Omega, h(\omega,):. X \rightarrow X$ is affine.

Definition (1.17): [15]

Let X be a metric space. A random operators $h, G: \Omega \times X \rightarrow X$ are said to be commute if $h(\omega,$.$) and G(\omega,$.$) are commute for each \omega \in \Omega$.

In the following we give a generalization for starshaped properties for $\emptyset \neq A \subseteq X$.

Definition (1.18):

Let X be a p-normed space,$A \subseteq \mathrm{X}$ and $G: \Omega \times X \rightarrow X$ be a random operator we say that A has property $\left(a_{1}\right)$ if
i. $\mathrm{G}: \Omega \times A \rightarrow A$
ii. $\quad\left(1-k_{n}\right) q+k_{n} G(\omega, x) \in A$, for some $\mathrm{q} \in A$ and a fixed real sequence $<k_{n}>$ converging to 1 and for each $x \in A$ and for each $\omega \in \Omega$.

Remark(1.19):

Any q-starshaped set has the property $\left(a_{1}\right)$ w.r.t any random operator : $\Omega \times A \rightarrow A$, but the converse is not true in general .

In the following we give a generalization for affine properties for random operator

Definition (1.20):

Let X be a p-normed space, $A \subseteq X$ and A has property $\left(a_{1}\right)$ w.r.t a random operator $G: \Omega \times X \rightarrow X, \mathrm{q} \in A$ and sequence $<k_{n}>$. A random operator $h: \Omega \times X \rightarrow X$ is said to be have property $\left(a_{2}\right)$ on A with property $\left(a_{1}\right)$ if

$$
\begin{aligned}
& h\left(\omega,\left(1-k_{n}\right) q+k_{n} G(\omega, x)\right)=\left(1-k_{n}\right) h(\omega, q)+k_{n} h(\omega, G(\omega, x)) \\
& \text { for all } x \in A \text { and } n \in N \text { and } \omega \in \Omega
\end{aligned}
$$

2. Random Common Fixed Point

Theorem (2.1):[15]

Let X be a compact metric space . Let $h, G: \Omega \times X \rightarrow X$ be two commuting random operators such that $G(\omega, X) \subseteq h(\omega, X)$ for all $\omega \in \Omega$. If h is continuous and
$d(G(\omega, x), G(\omega, y)) \leq d(h(\omega, x), h(\omega, y))$ for each $x, y \in X$ and each $\omega \in \Omega$ whenever $h(\omega, x) \neq h(\omega, y)$, then h and G have a common random fixed point .

Now, by using Theorem (2.1) we prove the following :

Theorem(2.2):

Let A be a nonempty compact subset of a p-normed space . Let $h: \Omega \times X \rightarrow X$ be a continuous random operator and has property $\left(a_{2}\right)$ with $h(\omega, A)=A$ and $h(\omega, q)=q$ for all $\omega \in \Omega, G: \Omega \times X \rightarrow X$ be an $h-$ nonexpansive random operator commute with h. If A has property $\left(a_{1}\right)$ w.r.t G and G is continuous random operator, then h and G have a common random fixed point .

Proof :

Since A has property (a_{1}) w.r.t , then
$\left(1-k_{n}\right) q+k_{n} G(\omega, x) \in A$, for some $\mathrm{q} \in A$ and a fixed real sequence $<k_{n}>$ converging to $1\left(0<k_{n}<1\right)$, for all $x \in A$ and for all $\omega \in \Omega$.

For each $n \geq 1$, defined the random operators G_{n} by
$G_{n}(\omega, x)=\left(1-k_{n}\right) q+k_{n} G(\omega, x)$, for all $x \in A$ and all $\omega \in \Omega$.
It is clear that, $G_{n}: \Omega \times A \rightarrow A$.
Since $G_{n}(\omega, A) \subseteq A=h(\omega, A)$, then $G_{n}(\omega, A) \subseteq h(\omega, A)$ for all $\omega \in \Omega$.
Since G commute with h, h has property $\left(a_{2}\right)$ and $h(\omega, q)=q$ for all $\omega \in \Omega$ then for each $x \in A$ and all $\omega \in \Omega$

$$
\begin{aligned}
G_{n}(\omega, h(\omega, x)) & =\left(1-k_{n}\right) q+k_{n} G(\omega, h(\omega, x)) \\
& =\left(1-k_{n}\right) h(\omega, q)+k_{n} h(\omega, G(\omega, x)) \\
& =h\left(\omega,\left(1-k_{n}\right) q+k_{n} G(\omega, x)\right) \\
& =h\left(\omega, G_{n}(\omega, x)\right)
\end{aligned}
$$

Therefore each G_{n} is commute with h .
Since G is h-nonexpansive, then

$$
\begin{aligned}
\| G_{n}(\omega, x)- & G_{n}(\omega, y) \|_{p} \\
= & \left\|\left(1-k_{n}\right) q+k_{n} G(\omega, x)-\left(1-k_{n}\right) q-k_{n} G(\omega, y)\right\|_{p} \\
& =\left|k_{n}\right|^{p}\|G(\omega, x)-G(\omega, y)\|_{p} \\
& \leq\left|k_{n}\right|^{p}\|h(\omega, x)-h(\omega, y)\|_{p} \\
& <\|h(\omega, x)-h(\omega, y)\|_{p}
\end{aligned}
$$

For all $x, y \in A$ and all $\omega \in \Omega$, thus each G_{n} is a random h-nonexpansive . Hence, by theorem (2.1), there is a common random fixed point $\delta_{n}: \Omega \rightarrow$ A of G_{n} and h such that $\delta_{n}(\omega)=h\left(\omega, \delta_{n}(\omega)\right)=G_{n}\left(\omega, \delta_{n}(\omega)\right)$.

For each n define $Q_{n}: \Omega \rightarrow k(A)$ by $Q_{n}(\omega)=\overline{\left\{\delta_{l}(\omega): \iota \geq n\right\}}$,
Define $Q: \Omega \rightarrow k(A)$ by $Q(\omega)=\cap_{n=1}^{\infty} Q_{n}(\omega)$.
so Q is measurable [7] and Q has measurable selector $\delta: \Omega \rightarrow A$ [12] .

Since A is compact and $\left\{\delta_{n}(\omega)\right\}$ sequence in A
Then there is a subsequence $\left\{\delta_{m}(\omega)\right\}$ of $\left\{\delta_{n}(\omega)\right\}$ converges to $\delta(\omega)$.
Having $\delta_{m}(\omega)=G_{m}\left(\omega, \delta_{m}(\omega)\right)=h\left(\omega, \delta_{m}(\omega)\right)$.
As h and G are continuous and $k_{n} \rightarrow 1$, we have $G_{m}\left(\omega, \delta_{m}(\omega)\right)$ converges to $G(\omega, \delta(\omega))$ and $h\left(\omega, \delta_{m}(\omega)\right)$ converges to $h(\omega, \delta(\omega))$. Consequently

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \delta_{m}(\omega)=\lim _{m \rightarrow \infty} G_{m}\left(\omega, \delta_{m}(\omega)\right)=\lim _{m \rightarrow \infty} h\left(\omega, \delta_{m}(\omega)\right) \\
& \delta(\omega)=G(\omega, \delta(\omega))=h(\omega, \delta(\omega))
\end{aligned}
$$

Hence $\delta: \Omega \rightarrow A$ is a common random fixed point of h and G.
As a consequence of theorem (2.2) we have the following

Corollary (2.3):

Let A be a nonempty compact subset of a p-normed space . Let $h: \Omega \times X \rightarrow X$ be a continuous random operator and has property $\left(a_{2}\right)$ with $h(\omega, A)=A$ and $h(\omega, q)=q$ for all $\omega \in \Omega, G: \Omega \times X \rightarrow X$ be an $h-$ nonexpansive random operator commute with h. If A is q -starshaped and G is continuous random operator, then h and G have a common random fixed point.

Theorem(2.4):

Let A be a nonempty separable weakly compact subset of a complete p-normed space . Let $h: \Omega \times X \rightarrow X$ be a continuous and weakly continuous random operator and has property $\left(a_{2}\right)$ with $h(\omega, A)=A$ and $h(\omega, q)=q$ for all $\omega \in \Omega, G: \Omega \times X \rightarrow X$ be an h-nonexpansive random operator commute with h. If A has property $\left(a_{1}\right)$ w.r.t G, and ($h-$ $G)(\omega,$.$) is demiclosed at zero for all \omega \in \Omega$, then h and G have a common random fixed point.

Proof :

Since A has property (a_{1}) w.r.t , then
$\left(1-k_{n}\right) q+k_{n} G(\omega, x) \in A$, for some $\mathrm{q} \in A$ and a fixed real sequence $<k_{n}>$ converging to $1\left(0<k_{n}<1\right)$, for all $x \in A$ and for all $\omega \in \Omega$.
For each $n \geq 1$, defined the random operators G_{n} by
$G_{n}(\omega, x)=\left(1-k_{n}\right) q+k_{n} G(\omega, x)$, for all $x \in A$ and all $\omega \in \Omega$.
It is clear that, $G_{n}: \Omega \times A \rightarrow A$.
Since $G_{n}(\omega, A) \subseteq A=h(\omega, A)$, then $G_{n}(\omega, A) \subseteq h(\omega, A)$ for all $\omega \in \Omega$.
Since G commute with h, h has property $\left(a_{2}\right)$ and $h(\omega, q)=q$ for all $\omega \in \Omega$ then for each $x \in A$ and all $\omega \in \Omega$

$$
\begin{aligned}
G_{n}(\omega, h(\omega, x)) & =\left(1-k_{n}\right) q+k_{n} G(\omega, h(\omega, x)) \\
& =\left(1-k_{n}\right) h(\omega, q)+k_{n} h(\omega, G(\omega, x)) \\
& =h\left(\omega,\left(1-k_{n}\right) q+k_{n} G(\omega, x)\right) \\
& =h\left(\omega, G_{n}(\omega, x)\right)
\end{aligned}
$$

Therefore each G_{n} is commute with h .
Since G is h-nonexpansive, then

$$
\begin{aligned}
\| G_{n}(\omega, x)- & G_{n}(\omega, y) \|_{p} \\
= & \left\|\left(1-k_{n}\right) q+k_{n} G(\omega, x)-\left(1-k_{n}\right) q-k_{n} G(\omega, y)\right\|_{p} \\
& =\left|k_{n}\right|^{p}\|G(\omega, x)-G(\omega, y)\|_{p} \\
& \leq\left|k_{n}\right|^{p}\|h(\omega, x)-h(\omega, y)\|_{p} \\
& <\|h(\omega, x)-h(\omega, y)\|_{p}
\end{aligned}
$$

For all $x, y \in A$ and all $\omega \in \Omega$, thus each G_{n} is a random h-nonexpansive. Since A is separable and weakly compact ,then the weak topology on A is a metric topology[3] which implies that A is hausdorff [10] then A is strongly closed, this implies A is a complete metric space [11] Thus all the conditions of Theorem (2.1) are satisfied .

Hence there is a common random fixed point $\delta_{n}: \Omega \rightarrow A$ of G_{n} and h such that $\delta_{n}(\omega)=h\left(\omega, \delta_{n}(\omega)\right)=G_{n}\left(\omega, \delta_{n}(\omega)\right)$.

Now, for each n define $Q_{n}: \Omega \rightarrow k_{w}(A)$ by $Q_{n}(\omega)=w-\overline{\left\{\delta_{l}(\omega): \iota \geq n\right\}}$.

Define $Q: \Omega \rightarrow k_{w}(A)$ by $Q(\omega)=\cap_{n=1}^{\infty} Q_{n}(\omega)$.
Since A is complete p-normed space ,then Q is weakly measurable[7] so Q has measurable selector $\delta: \Omega \rightarrow A$ [12] .

By weak compactness of A , we have that a subsequence $\left\{\delta_{m}(\omega)\right\}$ of $\left\{\delta_{n}(\omega)\right\}$ converges weakly to $\delta(\omega)$.
Having $\delta_{m}(\omega)=G_{m}\left(\omega, \delta_{m}(\omega)\right)=h\left(\omega, \delta_{m}(\omega)\right)$.
Now ,from weakly continuity of h, we have

$$
\begin{aligned}
h(\omega, \delta(\omega)) & =h\left(\omega, \lim _{m \rightarrow \infty} \delta_{m}(\omega)\right)=\lim _{m \rightarrow \infty} h\left(\omega, \delta_{m}(\omega)\right)=\lim _{m \rightarrow \infty} \delta_{m}(\omega) \\
& =\delta(\omega)
\end{aligned}
$$

Hence $h(\omega, \delta(\omega))=\delta(\omega)$.
Since $G\left(\omega, \delta_{m}(\omega)\right)=\frac{G_{m}\left(\omega, \delta_{m}(\omega)\right)-\left(1-k_{m}\right) q}{k_{m}}$ and $\delta_{m}(\omega)=h\left(\omega, \delta_{m}(\omega)\right)=$ $G_{m}\left(\omega, \delta_{m}(\omega)\right)$, we have

$$
\begin{aligned}
(h-G)\left(\omega, \delta_{m}(\omega)\right)= & h\left(\omega, \delta_{m}(\omega)\right)-G\left(\omega, \delta_{m}(\omega)\right. \\
& =\delta_{m}(\omega)-\frac{G_{m}\left(\omega, \delta_{m}(\omega)\right)-\left(1-k_{m}\right) q}{k_{m}} \\
& =\frac{\delta_{m}(\omega) k_{m}-G_{m}\left(\omega, \delta_{m}(\omega)\right)+\left(1-k_{m}\right) q}{k_{m}} \\
& =\frac{\delta_{m}(\omega) k_{m}-\delta_{m}(\omega)+\left(1-k_{m}\right) q}{k_{m}} \\
& =\frac{-\delta_{m}(\omega)\left(1-k_{m}\right)+\left(1-k_{m}\right) q}{k_{m}} \\
& =\frac{\left(1-k_{m}\right)\left(q-\delta_{m}(\omega)\right)}{k_{m}}
\end{aligned}
$$

Therefore, $(h-G)\left(\omega, \delta_{m}(\omega)\right)=\left(\frac{1}{k_{m}}-1\right)\left(q-\delta_{m}(\omega)\right)$
Thus

$$
\left\|(h-G)\left(\omega, \delta_{m}(\omega)\right)\right\|_{p}=\left|\frac{1}{k_{m}}-1\right|^{p}\left\|\left(q-\delta_{m}(\omega)\right)\right\|_{p} \leq
$$

$$
\left|\frac{1}{k_{m}}-1\right|^{p}\left[\left\|\delta_{m}(\omega)\right\|_{p}+\|q\|_{p}\right]
$$

Since A is bounded by A is weakly compact, and $\delta_{m}(\omega) \in A$ implies $\left\langle\left\|\delta_{m}(\omega)\right\|_{p}\right\rangle$ is bounded and so by the fact that $k_{m} \rightarrow 1$, we have

$$
\left\|(h-G)\left(\omega, \delta_{m}(\omega)\right)\right\|_{p} \rightarrow 0
$$

Since $\delta_{m}(\omega) \rightarrow \delta(\omega)$, then $\delta_{m}(\omega) \rightarrow \delta(\omega)$.
Since $\delta_{m}(\omega) \rightharpoonup \delta(\omega),(h-G)\left(\omega, \delta_{m}(\omega)\right) \rightarrow 0$ and $(h-G)(\omega,$.$) is$ demiclosed at 0 , then $(h-G)(\omega, \delta(\omega))=0$
This implies $h(\omega, \delta(\omega))-G(\omega, \delta(\omega))=0$
Hence $h(\omega, \delta(\omega))=G(\omega, \delta(\omega))$
Thus $h(\omega, \delta(\omega))=G(\omega, \delta(\omega))=\delta(\omega)$.
Therefore $\delta: \Omega \rightarrow A$ is a common random fixed of h and G .
As a special case of theorem (2.4) we have the following

Corollary (2.5):

Let A be a nonempty separable weakly compact subset of a complete p-normed space. Let $h: \Omega \times X \rightarrow X$ be a continuous and weakly continuous random operator and has property (a_{2})with $h(\omega, A)=A$ and $h(\omega, q)=q$ for all $\omega \in \Omega, G: \Omega \times X \rightarrow X$ be an h-nonexpansive random operator commute with h. If A is q-starshaped, and $(h-G)(\omega,$.$) is$ demiclosed at zero for all $\in \Omega$, then h and G have a common random fixed point.

Another common random fixed point theorem will be given for opial's spaces:

Theorem(2.6):

Let A be a nonempty separable weakly compact subset of a complete p-normed opial space X . Let $h: \Omega \times X \rightarrow X$ be a continuous and weakly continuous random operator and has property $\left(a_{2}\right)$ with $h(\omega, A)=$ A and $h(\omega, q)=q$ for all $\omega \in \Omega$,
$G: \Omega \times X \rightarrow X$ be an h-nonexpansive random operator commute with h. If A has property $\left(a_{1}\right)$ w.r.t G , then h and G have a common random fixed point.

Proof :

As in theorem (2.4), $h(\omega, \delta(\omega))=\delta(\omega)$ and $\left\|(h-G)\left(\omega, \delta_{m}(\omega)\right)\right\|_{p} \rightarrow 0$ As $\rightarrow \infty$.

Now, since X is opial space, if $h(\omega, \delta(\omega)) \neq G(\omega, \delta(\omega))$, then
$\lim _{m \rightarrow \infty} \inf \left\|h\left(\omega, \delta_{m}(\omega)\right)-h(\omega, \delta(\omega))\right\|_{p}$
$<\lim _{m \rightarrow \infty} \inf \left\|h\left(\omega, \delta_{m}(\omega)\right)-G(\omega, \delta(\omega))\right\|_{p}$
$=\lim _{m \rightarrow \infty} \inf \| h\left(\omega, \delta_{m}(\omega)\right)-G(\omega, \delta(\omega))-G\left(\omega, \delta_{m}(\omega)+G\left(\omega, \delta_{m}(\omega) \|_{p}\right.\right.$
$\leq \lim _{m \rightarrow \infty} \inf \| h\left(\omega, \delta_{m}(\omega)\right)-G\left(\omega, \delta_{m}(\omega)\left\|_{p}+\lim _{m \rightarrow \infty} \inf \right\| G\left(\omega, \delta_{m}(\omega)\right)\right.$

$$
-G(\omega, \delta(\omega)) \|_{P}
$$

Since G is h-nonexpansive and $\| h\left(\omega, \delta_{m}(\omega)\right)-G\left(\omega, \delta_{m}(\omega) \|_{p} \rightarrow 0\right.$, then
$\lim _{m \rightarrow \infty} \inf \left\|h\left(\omega, \delta_{m}(\omega)\right)-h(\omega, \delta(\omega))\right\|_{p}$
$<\lim _{m \rightarrow \infty} \inf \left\|h\left(\omega, \delta_{m}(\omega)\right)-h(\omega, \delta(\omega))\right\|_{p}$ which is contraction.
Hence $(\omega)=h(\omega, \delta(\omega))=G(\omega, \delta(\omega))$.
Therefore $\delta: \Omega \rightarrow A$ is a common random fixed of h and G .
As a consequence of theorem (2.6) we have the following

Corollary (2.7):

Let A be a nonempty separable weakly compact subset of a complete p-normed opial space. Let $h: \Omega \times X \rightarrow X$ be a continuous and weakly continuous random operator and has property $\left(a_{2}\right)$ with $h(\omega, A)=$ A and $h(\omega, q)=q$ for all $\omega \in \Omega, G: \Omega \times X \rightarrow X$ be an h-nonexpansive random operator commute with h. If A is q-starshaped then h and G have a common random fixed point .

3.Random Best Approximation

The following lemma is needed:

Lemma (3.1):[6]

Let A be a subset of a p-normed space. Then, for any $x \in X$, $P_{A}(x) \subseteq \partial A($ the boundary of $A)$.

As an application of Theorem (2.2), (2.4) and (2.6), we have the following result on random best approximation .

Theorem (3.2):

Let X be a p-normed space. Let $h, G: \Omega \times X \rightarrow X$ be two random operators and A a nonempty subset of X such that $G(\omega,):. \partial A \rightarrow A$ and $x_{\circ}=h\left(\omega, x_{\circ}\right)=G\left(\omega, x_{\circ}\right)$ for all $\omega \in \Omega$. Let $P_{A}\left(x_{\circ}\right)$ be a nonempty has property $\left(a_{1}\right)$ w.r.t G with $h(\omega, q)=q$ and $h\left(\omega, P_{A}\left(x_{0}\right)\right)=P_{A}\left(x_{0}\right)$ for all $\omega \in \Omega$ and let G is h-nonexpansive random operator and h has property $\left(a_{2}\right)$, continuous on $P_{A}\left(x_{0}\right)$ and $h(\omega, G(\omega, x))=G(\omega, h(\omega, x))$ for all $x \in P_{A}\left(x_{0}\right)$ and all $\omega \in \Omega$ then there exists a measurable map $\delta: \Omega \rightarrow$ $P_{A}\left(x_{0}\right)$ such that $\delta(\omega)=h(\omega, \delta(\omega))=G(\omega, \delta(\omega))$ for each $\omega \in \Omega$ if one of the following conditions is satisfied :
i. $\quad P_{A}\left(x_{0}\right)$ is compact and G is continuous on $P_{A}\left(x_{0}\right) \cup\left\{x_{0}\right\}$;
ii. $\quad P_{A}\left(x_{0}\right)$ is separable weakly compact subset of a complete p-normed space X, h weakly continuous random operator , $(h-G)(\omega,$.$) is$ demiclosed at zero for all $\omega \in \Omega$;
iii. $\quad P_{A}\left(x_{0}\right)$ is separable weakly compact subset of a complete p- normed space X, h weakly continuous random operator and X is opial space .

Proof :

Let $=P_{A}\left(x_{0}\right), y \in M$, since $h(\omega, M)=M$ for all $\omega \in \Omega$, so $h(\omega, y) \in M$. Also by lemma (3.1) $\in \partial A$. As $G(\omega,):. \partial A \rightarrow A$ for all $\in \Omega$, it follows that $G(\omega, y) \in A$. Since $G\left(\omega, x_{\circ}\right)=x_{\circ}$ and G is a h-nonexpansive random operator, thus

$$
\left\|G(\omega, y)-x_{\circ}\right\|_{p}=\left\|G(\omega, y)-G\left(\omega, x_{0}\right)\right\|_{p} \leq\left\|h(\omega, y)-h\left(\omega, x_{0}\right)\right\|_{p}
$$

As $h\left(\omega, x_{\circ}\right)=x_{\circ}$ and $h(\omega, y) \in M$,

$$
\left\|G(\omega, y)-x_{\circ}\right\|_{p} \leq\left\|h(\omega, y)-x_{\circ}\right\|_{p}=d_{p}\left(x_{\circ}, A\right)
$$

Since $G(\omega, y) \in A$ we have $(\omega, y) \in M$. Thus $G: \Omega \times P_{A}\left(x_{0}\right) \rightarrow P_{A}\left(x_{0}\right)$.
Hence the result follows by Theorem (2.2),(2.4) and (2.6) respectively . As a consequence of theorem(3.2) we get

Corollary (3.3):

Let X be a p-normed space. Let $h, G: \Omega \times X \rightarrow X$ be two random operators and A a nonempty subset of X such that $G(\omega,):. \partial A \rightarrow A$ and $x_{\circ}=h\left(\omega, x_{0}\right)=G\left(\omega, x_{0}\right)$ for all $\omega \in \Omega$. Let $P_{A}\left(x_{0}\right)$ be a nonempty q starshaped with $h(\omega, q)=q$ and $h\left(\omega, P_{A}\left(x_{0}\right)\right)=P_{A}\left(x_{0}\right)$ for all $\omega \in \Omega$ and let G is h-nonexpansive random operator and continuous on $P_{A}\left(x_{0}\right) \cup$ $\left\{x_{0}\right\}$ where h has property $\left(a_{2}\right)$, continuous on $P_{A}\left(x_{0}\right)$ and $h(\omega, G(\omega, x))=$ $G(\omega, h(\omega, x))$ for all $x \in P_{A}\left(x_{0}\right)$ and all $\omega \in \Omega$ then there exists a measurable map $\delta: \Omega \rightarrow P_{A}\left(x_{0}\right)$ such that $\delta(\omega)=h(\omega, \delta(\omega))=$ $G(\omega, \delta(\omega))$ for each $\omega \in \Omega$ if one of the following conditions is satisfied :
i. $\quad P_{A}\left(x_{0}\right)$ is compact and G is continuous on $P_{A}\left(x_{0}\right) \cup\left\{x_{0}\right\}$;
ii. $\quad P_{A}\left(x_{0}\right)$ is separable weakly compact subset of a complete p-normed space X, h weakly continuous random operator , $(h-G)(\omega,$.$) is$ demiclosed at zero for all $\omega \in \Omega$;
iii. $\quad P_{A}\left(x_{0}\right)$ is separable weakly compact subset of a complete p - normed space X, h weakly continuous random operator and X is Opial space.

Remark (3.4):

All Theorems and Corollaries in this paper are true for one random operator by taking $h=I$ (is the identity random operator).

References

1. Beg, I.JJahangir,A., and Azam,A.,"Random coincidence and fixed points for weakly compatible mappings in convex metric spaces", Asian-European J.Math. Vol. 2 (2),(2009),PP.(171-182).
2. Bharucha-Reid, A.T." Fixed point theorems in probabilistic analysis", Bull. Amer .Math .Soc .Vol.82(5),(1976).
3. Dunford, A., and Schwartz, J.T,"Linear operators", part I Interscience, New York.(1958).
4. Hanš , O .," Random operator equations", Proceedings of 4th Berkeley Sympos . Math . Statist. and Prob.,Vol.II. University of California, Part I,(1961), PP.(185-202).
5. Hanš , O .," Reduzierende zufallige transformationen", Czechoslovak Math .Journal .Vol.7(82),(1957), PP.(154-158).
6. Hicks, T.L., Humphries, M.D., "A Note on Fixed Point Theorems", J. Approx. Theory, Vol. 34, (1982), PP.(221-225).
7. Himmelberg,C.J.,"Measurable relations",Fund.Math.Vol.87,(1975),PP. (53-72).
8. Itoh, S. , "Random fixed point theorems with an applications to random differential equations in Banach spaces", J. Math. Anal .Appl .Vol.67,(1979),PP.(261-273) .
9. Jhad d^{1},P. K., and Salu ${ }^{2}$,A.S., "On random coincidence and fixed points for a pair of multi-valued and single-valued mappings " J. Anal .Appl.Vol.4(1), (2014), PP.(26-35).
10.Körner ,T.W., "Metric and topological "Janyary 19,2015 .
11.Kreyszig ,E., " Introductory functional analysis with applications "University of Windsor (1978).
12.Kuratowski, K., and Ryll, N.,"A general theorem on selectors",Bull.Acad.Polon.Sci.Ser.Sci.Math.Astronom.Phys.vol.13,(1965),PP.(397-403).
13.Latif, A., "A Result on Best Approximation in p-Normed Spaces", Arch. Math. (Brno), Vol. 37, (2001), PP.(71-75).
14.Nashine, H.K.,"Random fixed points and invariant random approximation in non-convex domains",Hacettepe
J.Math.Stat.vol.37(2),(2008),PP.(81-88).
15.Nashine, H.K., "Common random fixed point and random best approximation", Thai J.Math. Vol.3(1),(2005), PP.(63-70).
16.Nashine, H.K.,"Random approximation for non-commuting random operators in q-normed spaces"Random operators /Stochastic Eqs . Vol.16,(2008),PP(383-397).
17.Rashwan,R.A., and Albaqeri,D.M.,"Random coincidence and fixed point theorem for hybrid maps in separable metric spaces",Int.J.Open Problems Compute.Math., Vol.6(1), (2013), PP.(103-114).
18.Shahzad, N., and Latif, A. ," Note a random coincidence point theorem", J .Math. Anal .Appl.Vol.245,(2000),PP.(633-638).
19.Shahzad, N.,"Some general random coincidence point theorems ",New Zealand J.Math.Vol.33,(2004),PP.(95-103).
20.Shrivastava,R., Nashine,H.K., and Dewangan,C.L.,"Invariant random approximation in non-convex domain", J.Indones. Math. Soc. (Mihmi)., Vol.15(2),(2009),PP.(69-77).
21.Singh,S.P.,Watson,B., and Srivastava,P.,"Fixed point theory and best approximation:The KKM-Map Principle",Vol.424,Kluwer Academic Publishers ,(1997).
22.Špaček, A.Zufallige Gleichungen, Czechoslovak Mathematical Journal Vol.5(80),(1955),PP.(462-466).
10. Zeidler, E., "Non Linear Functional Analysis and Applications, I. Fixed Point Theorems", Springer Verlage, New York, Inc,(1986).
