Back bending phenomena evaluation and energy band crossing of some deformed nuclei

*Dr.Iman Tarik Al-Alawy (Prof.) *Dr.Khalid Salman Ibraheim (Prof.) **Dr.Ali Kalaf Aobaid (Assist.Prof.)

*Physics Department, College of Science Al-Mustansiriyah University **Physics Department, College of Science Anbar University

ABSTRACT

In the present work, the moment of inertia models(VMI,VAVM,GVMI)are used to study the nuclear structure of even-even nuclei $\binom{56}{26}Fe_{30}, \frac{74}{34}Se_{40}, \frac{88}{40}Zr_{48}, \frac{106}{46}Pd_{60}, \frac{156}{64}Gd_{92}, \frac{180}{72}Hf_{108}, \frac{186}{74}W_{112}$). These nuclei are belong to a dynamical symmetry O(6), SU(5)-O(6)-SU(3), SU(5), O(6)-SU(5), SU(3)-SU(5), SU(3), SU(3)-O(6) respectively, throw the study energy band crossing (energy level as a function of angular momentum), and back bending phenomena (moment of inertia (29/h²) as a function of rotational energy squared (ħ ω)²).

This study shows that the three moment of inertia models that are used here have no effect on the nuclear structure of the nucleus with the dynamical symmetry SU(3), but the nuclear structure of the other dynamical symmetries have been effected, because the back bending does appear in them.

حساب ظاهرة الانحناء الخلفى وظاهرة تقاطع حزم الطاقة لبعض الانوية المشوهة

المستخلص

تم في هذا البحث استخدام ثلاثة نماذج من نماذج عزم القصور الذاتي هي (WMI,VAVM), لغرض دراسة التركيب النووي لبعض الانوية الزوجية-الزوجية

الديناميكية ¹⁸⁶/₇₄W112 ¹⁸⁰/₇₂Hf108 ¹⁵⁶/₆₄Gd92 ¹⁰⁶/₄₆Pd60 ⁸⁸/₄₀Zr₄₈ ⁷⁴/₃₄Se₄₀ ⁵⁶/₂₆Fe₃₀ O(6),SU(5)-O(6)-SU(3),SU(5),O(6)-SU(5),SU(3)-SU(5),SU(3), الديناميكية

(6) O -(3) SU(3) على التوالي من خلال دراسة ظاهرة تقاطع حزم الطاقة (مستويات الطاقة كدالة للزخم الزاوي) وظاهرة الانحناء الخلفي (عزم القصور الذاتي (29/ħ²) ومربع الطاقة الدورانية ²(ħω)³ الزخم الزاوي) وظاهرة الانحناء الخلفي (عزم القصور الذاتي (29/ħ²) ومربع الطاقة الدورانية ²(ħω)³ الظهرت الدراسة الحالية للنماذج الثلاثة المستخدمة انه لا تأثير لعزم القصور الذاتي على شكل الانوية الدورانية عند التناظر الديناميكي (3) لعدم ظهور الانحناء الخلفي في الحزم التي تتمي النوية الدورانية على ألانوية الانوية الدورانية على ألانوية الانوية الدورانية على ألانوية الدورانية على ألانوية الدورانية على ألانوية الدورانية على ألانوية الانوية الدورانية على ألانوية الدورانية على ألانوية الدورانية عند التناظر الديناميكي (3) العدم ظهور الانحناء الخلفي في الحزم التي تتمي الدي الذوية الدورانية عند التناظر الديناميكي (3) العدم ظهور الانحناء الخلفي في الحزم التي التمي الدورانية على ألانوية الدورانية عند التناظر الديناميكي (10) العدم ظهور الانحناء الخلفي في الحزم التي الدورانية الدورانية عند التناظر الديناميكي (10) لعدم ظهور الانحناء الخلفي في الحزم التي التمي الدورانية على ألانوية الدورانية عند التناظر الديناميكي (10) العدم ظهور الانحناء الخلفي في الحزم التي التمامي الدورانية عند التناظر الديناميكية الاخرى فقد تبين وجود تأثير لعزم القصور الذاتي على تركيبها النووي بسبب ظهور ظاهرة الانحناء الخلفي.

INTRODUCTION

Moment of inertia is an important subjects that are used to explain the energy band crossing, and back bending phenomena.

The nucleus extension due to the centrifugal force effect, which increases the value of moment of inertia, happened only for rotational nuclei if it is supposed that the nucleus is fluid, where the theoretical moment of inertia value (θ_{fluid}) is very small compared with that experimental .But this extension does not happen if we suppose that the nucleus is a rigid body and moment of inertia in this case (θ_{rigid}) is large [1].

The Back Bending Phenomena

This phenomenon has been discovered by Johnson A., et al. (1971) [2]. They found that moment of inertia at certain angular momentum significantly increases accompanied with a decrease of rotational energy value of some nuclear. It also occurs because rotational energy is greater than the stopping power of a pair of nucleons to couple [1]. Where the single nucleons occupy different orbits which results in changing of the moment of inertia value for the nucleus.

The back bending is one feature of moment of inertia of deformed nuclei, in case of non appearance of back bending; this means that there is no effect of moment of inertia on the deformation of the nuclei .This can be attributed to:

(i): Energy Band Crossing

The band crossing means that the certain energy band like (β or γ) with high moment of inertia(ϑ_2) to replace or cross with another energy band as(g-band) state with lower moment of inertia (ϑ_1) (i.e. these two bands having same spin, and different in energy and moment of inertia will intersect with themselves) at a particular moment of inertia called (ϑ_c) where $\vartheta c = \vartheta cross$.

This phenomenon is considered an important feature of moment of inertia of deformed nuclei [3].

(ii): Corielis force effect

Corielis force effect increases with rotational motion at high spins for some nuclei; this increase in corielis force leads to depairing between numbers of nucleon pairs. The depairing of the first pair leads to the appearance of new band namely *"two quasi particles"* which probably intersects the ground state band at a certain angular momentum, while ground band remains completely paired. Where as the depairing of the second pair leads to the appearance of *"four-quasi particles"* band .This causes nuclear deformations and deviations at high angular momentum of some nucleus which causes back bending phenomena [4].

Habeeb N.A., et al. (1976)[5] explained the back bending phenomenon for ${}^{162}_{68}Er$ and ${}^{154}_{64}Gd$ nuclei depending on Corielis force effect.

Yu-Xin-Lin (1998) [6] have been calculated moment of inertia for high deformed nuclei using (IBM-1).

Hirsch, Jorge G., et al. (2005)[7] showed that the Pseudo SU(3) model and abnormal parity states in heavy deformed nuclei is based on the Pseudo spin symmetry, and is able to correctly predict the collective spectra and their transition amplitudes, and is also able to give nice description of the back bending phenomena.

THEORETICAL PART

1. Rotational and Vibration Energy Levels

The simple formula of the rotational or vibrational energy levels in even-even nuclei is

determined by [8]:

$$E = \frac{1}{2} \mathscr{G}\omega^2 = \frac{L^2}{2\mathscr{G}}....(1)$$

Where ω is a rotational or vibrational frequency. The above equation is quantized to [9]:

$$E(L) = \frac{\hbar^2}{2\vartheta} L(L+1)....(2)$$

Mariscotti M., et al., (1969)[10] proposed another formula from this equation as:

$$E(L) = \frac{1}{2} \left[\frac{L(L+1)}{g(L)} + C(g(L) - g_o)^2 \right]$$
Where

Where

 ${\mathcal G}\,$ (L) is a moment of inertia as a function of angular momentum

C, \mathcal{G}_{o} are parameters which are suitable with fitted to the experimental data.

The physical meanings of these parameters are [11]:

 \mathcal{G}_{o} is a moment of inertia for the ground state or (rotated nucleus).

C: is a meaning of "elasticity.

$$\frac{\partial E(L)}{\partial \mathcal{G}(L)} = -\frac{1}{2} \frac{L(L+1)}{\mathcal{G}^2(L)} + C(\mathcal{G}(L) - \mathcal{G}_o)....(4)$$

Moment of inertia $\mathcal{G}(L)$ can be determined from the equilibrium condition [10, 11]:

$$\frac{\partial E(L)}{\partial \mathcal{G}(L)} = 0....(5)$$

$$\mathcal{G}^{3}(L) - \mathcal{G}^{2}(L)\mathcal{G}_{o} - \frac{L(L+1)}{2C} = 0.....(6)$$

The solution of above equation is [12, 13]:

$$\mathcal{G}(L) = (x+y)^{1/3} + (x-y)^{1/3} + \frac{1}{3}\mathcal{G}_o....(7)$$

Where

$$x = \frac{L(L+1)}{4C} + \frac{\theta_o^3}{27}, y = \left[\frac{(L(L+1))^2}{16C^2} + \frac{\theta_o^3 L(L+1)}{54C}\right]^{1/2}....(8)$$

The nuclear softness coefficient (σ) can be written as [10]:

$$\sigma = \frac{1}{\mathcal{G}(L)} \left(\frac{d\mathcal{G}}{dL} \right)_{\mathcal{G}=0} \tag{9}$$

 σ can be written according to variable moment of inertia model as [10,12]

2. The back bending phenomena

Rotational energy square $(\hbar\omega)^2$ and moment of inertia can be written as[14]

$$\frac{2\mathcal{G}}{\hbar^2} = \frac{L(L+1)}{E(L)}....(12)$$

Equation (11) can be written for g-band and β -band as following [12, 13]:

$$(\hbar\omega)^2 = \left[\frac{E_{\gamma}}{\sqrt{L(L+1)} - \sqrt{(L-2)(L-1)}}\right]^2....(14)$$

and for γ -band is

$$(\hbar\omega)^2 = \left[\frac{E(L \to L-1)}{\sqrt{L(L+1)} - \sqrt{L(L-1)}}\right]^2$$
....(15)

Also from equation (12) can be evaluating moment of inertia for g-band and β -band as [15]:

$$\frac{29}{\hbar^2} = \frac{L(L+1) - (L-2)(L-2+1)}{E(L \to L-2)} = \frac{4L-2}{E(L_i) - E(L_f)}....(16)$$

and for γ -band is:

$$\frac{2\mathcal{G}}{\hbar^2} = \frac{L(L+1) - L(L-1)}{E(L \to L-1)} = \frac{2L}{E_{\gamma}}....(17)$$

Where $E(L\rightarrow L-2)$ is the energy difference between any two states which have angular momentum L and (L-2) for g-band and β -band while $E(L\rightarrow L-1)$ is the energy difference between any two states having angular momentum L and (L-1) for γ -band

RESULTS AND DISCUSSION

In the present study we can evaluate the following calculations by programming (VMI, VAVM, and GVMI) model using FORTRAN 77language:

1. Theoretical energy levels $E_{cal.}$ Using equation (3).

2. Moment of inertia as a function of angular momentum using equation (7). 3. Rotational energy square $(\hbar\omega)^2$ and $(2 g/\hbar^2)$ as a function of angular momentum.

4. Chi-squared which can be calculated from the following equation [16]:

$$\chi^{2} = \frac{(E_{cal} - E_{exp})^{2}}{E_{cal}^{2}}....(18)$$

5. Nuclear softness parameters (σ) from equation (10).

6. Standard deviation (Root Mean Square Deviation) from the following equation [11, 16]:

Table (1) shows the parameters $(\vartheta_0/\hbar^2, C, Y, E_k)$ which are used in (VMI, VAVM,GVMI) program to calculate the above results.

1. The Energy Band crossing

The increasing of rotational energy between any two excited states due to reduce moment of inertia at large angular momentum. Here, Corielis force effect will increase with the increase of rotational energy between these bands. This effect leads to reducing the energy of two nucleons, which occupy these states because, the depairing of the nucleon pairs. In this case, the direction of angular momentum of these nucleons is in same direction with the rotational axis with low rotational energy and maximum angular momentum. The unstable of these two excited states leads to crossing band with any other band at certain angular momentum called " L_{cross} .".

Figure (1) indicates the energy band crossing as a function of angular momentum for all chosen nuclei using (VMI) model.

It is noticed in this figure that the $(g,\beta_2),(g,\beta_3),(\beta_1, \beta_2,\gamma_2,\gamma_3)$ of the ${}_{26}^{56}Fe_{30}$ nucleus will intersect at angular momentum $L_c=(14,7,5)$ respectively, while the band crossing would happened at $L_c =(6,7,11,14,22)$ for ${}_{34}^{74}Se_{40}$ nuclei. This figure also shows that the bands of ${}_{40}^{88}Zr_{48}$ and ${}_{64}^{156}Gd_{92}$ are not crossing between them, while, all bands of ${}_{40}^{106}Pd_{60}$ are crossing at $L_c=(5,7,11)$, while, it happened at $L_c=13$ in ${}_{72}^{180}Hf_{108}$ and at $L_c=(5,7)$ of ${}_{74}^{186}W_{112}$.

Figure(2) shows the energy band crossing for the same nuclei using (VAVM). This figure shows the bands(g, β_3), (g, γ_1), (β_1 , β_2 , γ_2 , γ_3) of ${}_{26}^{56}Fe_{30}$ intersect at angular momentum L_c=(15,7,5) respectively, while it happened at L_c =(4,8,17) in ${}_{34}^{74}Se_{40}$, L_c= (4,5,7,12,17,21) in ${}_{46}^{106}Pd_{60}$, L_c=14 in ${}_{72}^{180}Hf_{108}$ and L_c =(10,20,22) in ${}_{74}^{186}W_{112}$, while in the bands of ${}_{64}^{156}Gd_{92}$ there are no crossing between them .

Figure(3) shows the band crossing using (GVMI) model for all selected nuclei.

In this figure we noticed that the (g, β_3 , γ_1), (β_1 , β_2 , γ_2 , γ_3) bands crossing at $L_c = (14,6) \text{ in } {}_{26}^{56}Fe_{30}$ respectively, $L_c = (4,7,9,12) \text{ in } {}_{34}^{74}Se_{40}$. This figure also

shows that the band crossing happened between (β_1,β_2) bands at $L_c=18$, $L_c=(5,6,8,11)$ in ${}^{106}_{46}Pd_{60}$, $L_c=14$ in ${}^{180}_{72}Hf_{108}$, and $L_c=(4,6,10)$ in ${}^{186}_{74}W_{112}$, while, there is no band crossing in ${}^{156}_{64}Gd_{92}$.

2. The Back Bending Phenomenon

In order to study the back bending phenomenon, we must calculated and drawn the values of moments of inertia($2\theta/\hbar^2$) and rotational energy squared $(\hbar\omega)^2$ as a function of angular momentum (L) by using (VMI,VAVM, and GVMI) model using the parameters(θ_o , C. E_K, Y) in table(1) for the ground state, and the excited state bands.

Figure (4) indicates that the back bending (moment of inertia $(29/\hbar^2)$ as a function of rotational energy squared $(\hbar\omega)^2$ using VMI model for chosen nuclei . This figure shows that the back bending occurs in γ_1 –band of ${}^{56}_{26}Fe_{30}$ and ${}^{74}_{34}Se_{40}$ at angular momentum L_c=9,12 respectively, and no effect of moment of inertia on nuclear structure of other nuclei , due to the back bending not occurs .

Figure (5) shows the same plot but for (VAVM) model. It is noticed in this figure that the back bending occurs in γ_1 -band of $\frac{106}{46}Pd_{60}$ at angular momentum L_c=9, while it is not occurs in the other band.

Figure (6) also shows the back bending using (GVMI) model. This figure noticed that the back bending occurs in (g, β_1, β_3) , (β_3, β_4) , (g, β_1, β_2) , $(\beta_1, \beta_3, \beta_4)$, (β_1) bands of the nuclei ${}^{56}_{26}Fe_{30}$, ${}^{74}_{34}Se_{40}$, ${}^{88}_{40}Zr_{48}$, ${}^{106}_{46}Pd_{60}$, ${}^{186}_{74}W_{112}$ at angular momentum L_c=(8,8,18), (16,12), (10,10,6), (8,8,10),(12) respectively, while it is not happened in ${}^{156}_{64}Gd_{92}$, ${}^{180}_{72}Hf_{108}$ nuclei.

We noticed from these figures in which the back bending appearance, the moment of inertia $(29/\hbar^2)$ increases with rotational energy squared $(\hbar\omega)^2$, but at certain angular momentum (L_c) the rotational energy squared $(\hbar\omega)^2$ decreases, while the moment of inertia $(29/\hbar^2)$ increases ,causing the back bending phenomena .This reason belonging to "*Corielis antipiring effect*" .In this case the moment of inertia will effect on nuclear structure of these nuclei .

The figures in which no back bending appearance; this means that there is no effect of moment of inertia on nuclear structure of these nuclei. Such, that these nuclei are belonging to dynamical symmetry SU(3) as in $^{180}_{72}Hf_{108}$ nuclei.

Nuclei	band	parameter Model		C (MeV) ³	Ek (MeV)	Y (MeV)	o	Standard deviation	χ²
		VMI	1.8100	0.0470	0.0000		1.7941	0.0709	0.0068
	g	GVMI	0.0280	0.044	0.0000	0.4680	51.78	0.0763	0.0075
		VAVM	24.1800	0.01000	0.0000	0.4280	-0.0141	0.0603	0.0054
		VMI	6.0000	5.0000	2.9417		0.0005	0.3956	0.1605
	β1	GVMI	9.1200	7.8800	2.9417	1.0000	-0.0002	0.1666	0.0278
		VAVM	7.9000	18.0000	2.9417	0.0280	-0.0002	0.0464	0.0019
$^{54}_{24}Fe_{30}$	β2	VMI	13.0000	8.8000	3.5992		0.0003	0.1305	0.0132
O(6)		GVMI	54.0000	0.0020	3.5992	5.2000	-0.0298	0.0198	0.0003
		VAVM	10.1600	12.0000	3.5992	0.0016	-0.0001	0.0004	0.0000
		VMI	27.9000	0.08000	4.3002		0.0003	0.0529	0.0019
	β3	GVMI	93.4000	0.0110	4.3002	3.9900	-0.0008	0.0010	0.000001
		VAVM	23.2000	11.0000	0.0096	4.3002	-0.00001	0.0007	0.00000
		VMI	12.4000	2.0160	2.3800		0.00001	0.1960	0.0632
	γ1	GVMI	17.9000	3.9800	2.6575	0.8400	-0.00003	0.1879	0.05950
		VAVM	0.2800	0.0008	2.6460	0.00588	-0.00004	0.6688	06776

Table (1): The corresponding parameters of (VMI), GVMI, VAVM) model for even-even nuclei.

Table (1): To be continued (2/8).

Nuclei	band	parameter Model	\$_0/ħ ² (MeV) ⁻¹	C (MeV) ³	Ek (MeV)	Y (MeV)	0,	Standard deviation	χ²
		VMI	6.4000	0.6920	3.0000		0.0028	0.1626	0.0233
	γ2	GVMI	83.0200	0.9900	3.3697	7.9960	-0.00003	0.1579	0.0198
		VAVM	8.2000	6.6000	3.2600	0.0020	-0.0005	0.1278	0.0137
56 26 Fe 30	γ3	VMI	8.8600	0.6900	3.5400		0.0010	0.0956	0.0070
O(6)		GVMI	99.8800	1.0000	3.7480	7.6000	-0.00001	0.0944	0.0066
		VAVM	11.0000	8.8800	3.6900	0.0010	-0.0002	0.0741	0.0042
		VMI	8.8800	4.0900	3.6800		0.00002	0.0550	0.0022
	γ4	GVMI	85.0400	1.0000	3.8303	7.4800	-0.00002	0.0517	0.0019
		VAVM	11.0000	4.8800	3.7200	0.0360	-0.0003	0.0392	0.0011
		VMI	1.0000	0.0090	0.0000		55.5556	0.0561	0.0089
	g	GVMI	3.1642	1.0600	0.0000	0.0710	0.0255	0.0186	0.0011
		VAVM	72.9200	0.4990	0.0000	0.3162	-0.00001	0.0071	0.0002
74 S'a		VMI	6.5500	0.0452	0.8538		0.0394	0.0053	0.00006
34 DE40 SU(5) -	β1	GVMI	4.6000	1.1880	0.8538	0.2220	0.0048	0.0171	0.0006
O(6) -		VAVM	23.0000	0.2990	0.8538	0.2200	-0.0005	0.0194	0.0009
30(3)		VMI	7.5000	0.0110	2.1300		0.1077	0.1459	0.0272
	β_2	GVMI	5.7000	5.6000	2.1300	0.1600	0.0006	0.1358	0.0235
		VAVM	28.3200	0.4990	2.1300	0.1526	-0.0002	0.1232	0.0208

Table (1): To be continued (3/8).

Nuclei	band	parameter Model		C (MeV) ³	Ek (MeV)	Y (MeV)	o	Standard deviation	χ²
		VMI	6.4400	0.0087	2.7180		0.2152	0.1470	0.0211
	β3	GVMI	12.7000	0.8000	2.7180	1.0000	-0.0006	0.0340	0.0012
		VAVM	10.5580	0.4990	2.7180	0.0505	-0.0034	0.0012	0.000001
	β₄	VMI	6.6000	0.0053	2.9180		0.3281	0.0794	0.0058
⁷⁴ ₃₄ Se ₄₀ SU(5) -		GVMI	4.4600	0.7000	2.9180	0.00006	0.0161	0.0152	0.0002
O(6) - SU(3)		VAVM	98.0000	0.0480	2.9160	0.2000	-0.00004	0.0395	0.0014
	γ1	VMI	9.0000	0.0200	1.6600		0.0343	0.3310	0.2229
		GVMI	20.0000	1.0000	1.7400	1.3700	-0.0002	0.1900	0.0683
		AVMV	74.0000	0.4400	0.8300	0.4250	-0.00001	0.1732	0.0714
		VMI	1.0000	0.01000	0.0000		50.0000	0.4674	0.9331
⁸⁸ ₄₀ Zr ₄₈ SU(5)	g	GVMI	1.0000	02860	0.0000	0.0290	3.2934	0.2740	0.1656
		VAVM	99.8000	0.3288	0.0000	0.3720	-0.000006	0.4316	0.5778

Table (1): To be continued (4/8).

Nuclei	band	parameter Model		C (MeV) ³	E _k (MeV)	Y (MeV)	o	Standard deviation	χ ²
		VMI	9.2800	0.8900	1.5214		0.0007	0.0170	0.0004
	β1	GVMI	2.8000	0.4000	1.5214	0.0180	0.1098	0.3597	0.1828
$^{88}_{40}Zr_{48}$		VAVM	48.0000	0.0088	1.5214	0.2200	-0.0020	0.1339	0.0257
SU(5)	β2	VMI	7.4400	0.9990	2.2250		0.0012	0.0339	0.0013
		GVMI	3.0000	0.0820	2.2250	0.0320	0.4227	0.4908	0.2423
		VAVM	0.7000	0.00038	2.2250	0.1900	3836	0.0891	0.0088
		VMI	2.0000	0.0077	0.0000		8.1169	0.7749	0.8603
	g	GVMI	2.2800	0.1000	0.0000	0.08200	0.7053	0.1395	0.0793
¹⁰⁶ <i>Pd</i> ₆₀ O(6)- SU(5)		VAVM	99.6000	0.1660	0.0000	0.2610	-0.00001	0.2968	0.2094
		VMI	6.2000	0.0090	1.1338		0.2331	0.0419	0.0033
	β1	GVMI	4.6500	1.0000	1.1338	0.0610	0.0087	0.0020	0.000007
		VAVM	91.0000	0.00238	1.1338	0.2138	-0.0011	0.0005	0.000000

Table (1): To be continued (5/8).

Nuclei	band	parameter Model	𝔅 ₀/ħ² (MeV) ⁻¹	C (MeV) ³	E _k (MeV)	Y (MeV)	0'	Standard deviation	χ ²
		VMI	4.2000	0.0020	1.7064		3.3744	0.1636	0.0374
	B 2	GVMI	2.6000	0.0135	1.7064	0.0000	4.2145	0.0100	0.0134
		VAVM	99.6000	0.1860	1.7064	0.1590	-0.00001	0.1496	0.0316
		VMI	5.6000	0.00019	2.0015		14.9848	0.0882	0.0108
	β3	GVMI	7.6000	0.0070	2.0015	0.0260	0.3085	0.0594	0.0046
106		VAVM	99.6000	0.1860	2.0015	0.0900	-0.00001	0.0855	0.0098
O(6)-		VMI	5.0000	0.0002	2.2781		19.9005	0.0013	0.000002
SU(5)	β4	GVMI	12.1700	0.0500	2.2781	0.0790	0.0093	0.0010	0.000001
		VAVM	99.6000	0.1860	2.2781	0.0742	-0.00001	0.0081	80000.0
	γ1	VMI	7.8000	1.9800	0.7700		0.0005	0.0709	0.0094
		GVMI	21.5000	2.0000	1.0600	2.0560	-0.0001	0.0566	0.0074
		AVMV	29.0000	0.2000	0.4000	0.3500	-0.0004	0.0859	0.0137

Table (1): To be continued (6/8).

Nuclei	band	parameter Model	&₀/ħ² (MeV) ⁻¹	C (MeV) ³	E _{id} (MeV)	Y (MeV)	o	Standard deviation	χ²
		VMI	32.7580	0.0025	0.0000		0.0057	0.0079	0.0003
	g	GVMI	21.7600	0.0057	0.0000	0.3307	0.0057	0.0079	0.0003
		VAVM	94.4000	0.0040	0.0000	0.0534	-0.0006	0.0399	0.0098
		VMI	40.8000	0.00223	1.0495		0.0033	0.0133	0.0006
	βı	GVMI	23.6000	1.0600	1.0495	0.2250	0.00004	0.0074	0.0002
		VAVM	98.9900	0.0640	1.0495	0.0384	-0.00003	0.0132	0.0007
	β₂	VMI	30.6000	0.0016	1.1682		0.0109	0.0213	0.0016
		GVMI	16.8800	0.01400	1.1682	0.2020	0.0088	0.0158	0.0010
¹⁵⁶ ₆₄ Gd ₉₂		VAVM	99.2000	0.0740	1.1682	0.0583	-0.00003	0.0223	0.0017
SU(5)- SU(5)		VMI	46.0000	0.09988	1.7152		0.0001	0.0234	0.0011
	βs	GVMI	31.9000	0.0380	1.7152	0.3640	0.0002	0.0219	0.0009
		VAVM	68.0000	0.0740	1.7152	0.0200	-0.00008	0.0131	0.0004
		VMI	30.6000	0.0016	1.0660		0.0109	0.0117	0.0007
	γı	GVMI	52.2000	0.000356	1.1300	1.1080	-0.0240	0.0133	0.0007
		AVMV	81.0000	0.0040	1.0700	0.0460	-0.0009	0.0182	0.0014
		VMI	20.0000	0.0016	1.6000		0.0391	0.1198	0.0337
	γ2	GVMI	47.0000	0.8000	1.7660	1.0000	-0.00001	0.0676	0.0102
		VAVM	62.0000	0.0080	1.6900	0.0520	-0.0010	0.0730	0.0119

Nuclei	band	parameter Model	Ձ₀/ħ² (MeV) ⁻¹	C (MeV) ³	E _k (MeV)	Y (MeV)	Ø	Standard deviation	χ²
		VMI	32.0540	0.01370	0.0000		0.0011	0.0002	0.00000
	50	GVMI	21.5800	0.0280	0.0000	0.3400	0.0011	0.0009	0.00001
		VAVM	70.4800	3.8800	0.0000	0.0490	-0.000001	0.0087	0.0005
	βι	VMI	44.6000	0.8800	1.1073		0.0000	0.0228	0.0015
		GVMI	30.8000	1.8820	1.1073	0.3540	0.000005	0.0221	0.0014
180 72 Hf 108		VAVM	73.6000	1.8800	1.1073	0.0256	-0.000003	0.0192	0.0011
SU(3)		VMI	0.0600	0.0020	1.3157		1162	0.1643	0.0443
	β2	GVMI	4.4000	0.4800	1.3157	0.0000	0.0244	0.1386	0.0301
		VAVM	99.8800	0.0800	1.3157	0.2000	-0.00002	0.1620	0.0426
		VMI	0.9990	0.0003	1.0600		1671	0.05147	0.0095
	γı	GVMI	42.2000	1.2800	1.1998	0.6800	-0.000004	0.0357	0.0049
		VAVM	99.0000	0.1801	1.1000	0.0640	-0.00001	0.0325	0.0039

Table ((1): 1	To be	continued	(7/8).
---------	--------	-------	-----------	--------

Table (1): To be continued (8/8).

Nuclei	band	parameter Model	ϑ₀/ħ² (MeV) ⁻¹	C (MeV) ³	E _{id} (MeV)	Y (MeV)	0°	Standard deviation	χ²
		VMI	12.0000	0.0010	0.0000		0.2894	0.1126	0.0739
	g	GVMI	13.2400	9.0000	0.0000	0.2000	0.00003	0.0242	0.0081
		VAVM	57.3440	0.0096	0.0000	0.06420	-0.0011	0.0059	0.0004
	βι	VMI	0.0400	0.0008	0.8820		9803	0.0768	0.0141
		GVMI	7.4000	0.4900	0.8820	0.2600	0.0024	0.1471	0.0535
186 74 112 SU(3)		VAVM	98.0000	0.0640	0.8820	0.1420	-0.00003	0.0806	0.0156
O(6)		VMI	10.0000	0.0006	1.1530		0.8333	0.1086	0.0265
	β2	GVMI	3.0000	0.0040	1.1530	0.0300	8.7037	0.5383	0.0057
		VAVM	99.6000	0.0740	1.1530	0.1158	-0.00003	0.0935	0.0179
		VMI	20.0000	0.8800	0.6600		0.00007	0.0527	0.0096
	γı	GVMI	30.4000	0.0080	0.7100	1.4500	-0.0084	0.0493	0.0077
		VAVM	70.0000	0.0001	0.4400	0.1600	-0.0583	0.0346	0.0038

REFERENCES

1-Krane K.S.," Introductory nuclear physics," Ed, Halliday, D., Pub. John, Wiley, P.141-144 (1987).

2-Johnson A., Ryde H. and Sztarkier J. ; phys. Let. B, Vol.34, P.605 (1971).

3-Ward D.,Graham R.L.,Geijer J.S .and Androws H.R.;phys.Let.B,Vol.44,P.39(1973).

4-Birbrair B.L.; phys. Let. B ,Vol.39,P.489 (1972).

5-Habeeb N.A., Bishop R.F., Irvino J.M. and Strayer M.R.; Nucl. Phys., A, Vol.272, p.174 (1976). 71-Yu-Xin Lin; phys. Rev., C, Vol.58, P.237 (1998).

6-Yu-Xin Lin; phys. Rev., C, Vol. 58, P.237 (1998).

7-Hirsch, Jorge G.; Castanos, Octavio; Hess, Peter O.; PDF http://www.citebase Nuci.-th/9402013 (2005).

8-Elloek B.,"Analysis and description of nuclear rotational spectra," Neutron capture-Gamma ray spectroscopy, P.443 (1969).

9-Deleplanque M.A., Frauenderf S., Pashkevich V.V., Chu S.Y., and Unzhakova A., "Gross shell structure of moments of inertia, "Lawrence Berkeley National Laboratory, (LBNI), University of California, Vol. 52316 (2002).

10-Mariscotti M.A.J., Gertude Scharff-Gold Haber, and Brain Buck; phys. Rev.Vol.178,P.1864 (1969). 46-Alenicheva T.V., Kabina P., Mitropolsky I.A., and Tyukavina T.M. ; IAEA Nuclear data section, Wagramer strasse5,A-1400 Viena , INDC(CCP),P.439 (2004).

11-Alenicheva T.V., Kabina P., Mitropolsky I.A., and Tyukavina T.M. ; IAEA Nuclear data section, Wagramer strasse5,A-1400Viena,INDC(CCP),P.439 (2004).

12-Bonatsos D.,"Interaction boson model of nuclear structure," Ed.David. Stanford ,pub. In the united state by oxford university press., New York7th P.1,2.(1988).

13-Bonatsos D., and Daskalayannis C.; Progr. Part , Nucl. Phys., Vol.43, P.537 (1999).

14-Venkova T.S., and Andreit Scheff W.;"Atomic data and nuclear data tables," Vol.26 ,P.93 (1981).

15-Holmberg P.,"Calculation of rotational states in deformed nuclei,"Neutron capture-Gamma ray spectroscopy, P.463 (1969).

16-Murray R., Spiegel and Larry J. Stephens," schaum, s out lines statistics," Ed. Mc Graw Hill (1999).

Nucle i	band	paramet er Model	9 ₀/ħ ² (MeV) ⁻¹	C (MeV) ³	E _k (MeV)	Y (MeV)	0'	Standa rd deviati on	χ²
		VMI	1.8100	0.0470	0.0000		1.7941	0.0709	0.0068
	g	GVMI	0.0280	0.044	0.0000	0.4680	51.78	0.0763	0.0075
		VAVM	24.1800	0.01000	0.0000	0.4280	-0.0141	0.0603	0.0054
		VMI	6.0000	5.0000	2.9417		0.0005	0.3956	0.1605
	β 1	GVMI	9.1200	7.8800	2.9417	1.0000	-0.0002	0.1666	0.0278
	1	VAVM	7.9000	18.0000	2.9417	0.0280	-0.0002	0.0464	0.0019
$56 E_{2}$	β	VMI	13.0000	8.8000	3.5992		0.0003	0.1305	0.0132
$26Te_{30}$		GVMI	54.0000	0.0020	3.5992	5.2000	-0.0298	0.0198	0.0003
O(6)	2	VAVM	10.1600	12.0000	3.5992	0.0016	-0.0001	0.0004	0.0000
		VMI	27.9000	0.08000	4.3002		0.0003	0.0529	0.0019
	β	GVMI	93.4000	0.0110	4.3002	3.9900	-0.0008	0.0010	0.000001
	3	VAVM	23.2000	11.0000	0.0096	4.3002	-0.00001	0.0007	0.00000
		VMI	12.4000	2.0160	2.3800		0.00001	0.1960	0.0632
	γ_1	GVMI	17.9000	3.9800	2.6575	0.8400	-0.00003	0.1879	0.05950
		VAVM	0.2800	0.0008	2.6460	0.00588	-0.00004	0.6688	06776

Table (1): The corresponding parameters of (VMI), GVMI, VAVM) model for even-
even nuclei.

Nucle i	band	paramet er Model	<i>θ</i> ₀ /ħ ² (MeV) -1	C (MeV) ³	E _k (MeV)	Y (MeV)	0,	Standa rd deviati on	χ ²
	``	VMI	6.4000	0.6920	3.0000		0.0028	0.1626	0.0233
	γ_2	GVM	83.0200	0.9900	3.3697	7.9960	-0.00003	0.1579	0.0198
		VAVM	8.2000	6.6000	3.2600	0.0020	-0.0005	0.1278	0.0137
${}^{56}_{26}Fe_{30}$		VMI	8.8600	0.6900	3.5400		0.0010	0.0956	0.0070
O(6)	γ_2	GVMI	99.8800	1.0000	3.7480	7.6000	-0.00001	0.0944	0.0066
0(0)	¥3	VAVM	11.0000	8.8800	3.6900	0.0010	-0.0002	0.0741	0.0042
		VMI	8.8800	4.0900	3.6800		0.00002	0.0550	0.0022
	γ_4	GVMI	85.0400	1.0000	3.8303	7.4800	-0.00002	0.0517	0.0019
		VAVM	11.0000	4.8800	3.7200	0.0360	-0.0003	0.0392	0.0011
		VMI	1.0000	0.0090	0.0000		55.5556	0.0561	0.0089
	g	GVMI	3.1642	1.0600	0.0000	0.0710	0.0255	0.0186	0.0011
		VAVM	72.9200	0.4990	0.0000	0.3162	-0.00001	0.0071	0.0002
⁷⁴ Se		VMI	6.5500	0.0452	0.8538		0.0394	0.0053	0.00006
34 DC 40	β 1	GVMI	4.6000	1.1880	0.8538	0.2220	0.0048	0.0171	0.0006
SU(5) - O(6) - SU(3)	1	VAVM	23.0000	0.2990	0.8538	0.2200	-0.0005	0.0194	0.0009
50(5)		VMI	7.5000	0.0110	2.1300		0.1077	0.1459	0.0272
	β 2	GVMI	5.7000	5.6000	2.1300	0.1600	0.0006	0.1358	0.0235
		VAVM	2 8.3200	0.4990	2.1300	0.1526	-0.0002	0.1232	0.0208

Table (1): To be continued (2/8).

 Table (1): To be continued (3/8).

Nucle i	band	parame ter Model	9 0/ħ ² (MeV) ⁻	C (MeV) ³	E _k (MeV)	Y (MeV)	0'	Standa rd deviati on	χ ²
		VMI	6.4400	0.0087	2.7180		0.2152	0.1470	0.0211
	β 3	GVMI	12.7000	0.8000	2.7180	1.0000	-0.0006	0.0340	0.0012
		VAVM	10.5580	0.4990	2.7180	0.0505	-0.0034	0.0012	0.000001
	β 4	VMI	6.6000	0.0053	2.9180		0.3281	0.0794	0.0058
$^{74}_{34}Se_{40}$		GVMI	4.4600	0.7000	2.9180	0.00006	0.0161	0.0152	0.0002
- O(6) - SU(3)		VAVM	98.0000	0.0480	2.9160	0.2000	-0.00004	0.0395	0.0014
	γ1	VMI	9.0000	0.0200	1.6600		0.0343	0.3310	0.2229
		GVMI	20.0000	1.0000	1.7400	1.3700	-0.0002	0.1900	0.0683
		AVMV	74.0000	0.4400	0.8300	0.4250	-0.00001	0.1732	0.0714
⁸⁸ ₄₀ Zr ₄₈ SU(5)		VMI	1.0000	0.01000	0.0000		50.0000	0.4674	0.9331
	g	GVMI	1.0000	02860	0.0000	0.0290	3.2934	0.2740	0.1656
		VAVM	99.8000	0.3288	0.0000	0.3720	-0.000006	0.4316	0.5778

Table (1): To be continued(4/8).

Nucle i	band	paramet er Model	9 ₀/ħ ² (MeV) ⁻¹	C (MeV) ³	E _k (MeV)	Y (MeV)	0,	Standa rd deviati on	χ ²
		VMI	9.280 0	0.8900	1.5214		0.0007	0.0170	0.0004
	β 1	GVMI	2.800 0	0.4000	1.5214	0.0180	0.1098	0.3597	0.1828
$^{88}_{40}Zr_{48}$		VAVM	48.00 00	0.0088	1.5214	0.2200	-0.0020	0.1339	0.0257
SU(5)	β 2	VMI	7.440 0	0.9990	2.2250		0.0012	0.0339	0.0013
		GVMI	3.000 0	0.0820	2.2250	0.0320	0.4227	0.4908	0.2423
		VAVM	0.700 0	0.00038	2.2250	0.1900	3836	0.0891	0.0088
	g	VMI	2.000 0	0.0077	0.0000		8.1169	0.7749	0.8603
		GVMI	2.280 0	0.1000	0.0000	0.08200	0.7053	0.1395	0.0793
¹⁰⁶ ₄₆ Pd ₆₀ O(6)- SU(5)		VAVM	99.60 00	0.1660	0.0000	0.2610	-0.00001	0.2968	0.2094
		VMI	6.200 0	0.0090	1.1338		0.2331	0.0419	0.0033
	β 1	GVMI	4.650 0	1.0000	1.1338	0.0610	0.0087	0.0020	0.000007
		VAVM	91.00 00	0.00238	1.1338	0.2138	-0.0011	0.0005	0.000000

 Table (1): To be continued (5/8).

Nucl ei	band	param eter Model	$\frac{\mathcal{G}_{0}/\hbar^{2}}{(\text{MeV})^{-1}}$	C (MeV) ³	E _k (MeV)	Y (MeV)	0'	Standa rd deviati on	χ ²
		VMI	4.2000	0.0020	1.7064		3.3744	0.1636	0.0374
	B 2	GVMI	2.6000	0.0135	1.7064	0.0000	4.2145	0.0100	0.0134
	2	VAVM	99.6000	0.1860	1.7064	0.1590	-0.00001	0.1496	0.0316
		VMI	5.6000	0.00019	2.0015		14.9848	0.0882	0.0108
	β 3	GVMI	7.6000	0.0070	2.0015	0.0260	0.3085	0.0594	0.0046
$^{106}_{46}Pd_{60}$	-	VAVM	99.6000	0.1860	2.0015	0.0900	-0.00001	0.0855	0.0098
O(6)-		VMI	5.0000	0.0002	2.2781		19.9005	0.0013	0.000002
)	β 4	GVMI	12.1700	0.0500	2.2781	0.0790	0.0093	0.0010	0.000001
		VAVM	99.6000	0.1860	2.2781	0.0742	-0.00001	0.0081	0.00008
	γ1	VMI	7.8000	1.9800	0.7700		0.0005	0.0709	0.0094
		GVMI	21.5000	2.0000	1.0600	2.0560	-0.0001	0.0566	0.0074
		AVMV	29.0000	0.2000	0.4000	0.3500	-0.0004	0.0859	0.0137

Nuclei	band	parameter Model	$\frac{\mathcal{G}_{0}/\hbar^{2}}{(MeV)^{-1}}$	C (MeV) ³	E _k (MeV)	Y (MeV)	0,	Standard deviation	χ ²
		VMI	32.7580	0.0025	0.0000		0.0057	0.0079	0.0003
	g	GVMI	21.7600	0.0057	0.0000	0.3307	0.0057	0.0079	0.0003
		VAVM	94.4000	0.0040	0.0000	0.0534	-0.0006	0.0399	0.0098
		VMI	40.8000	0.00223	1.0495		0.0033	0.0133	0.0006
	β_1	GVMI	23.6000	1.0600	1.0495	0.2250	0.00004	0.0074	0.0002
		VAVM	98.9900	0.0640	1.0495	0.0384	-0.00003	0.0132	0.0007
		VMI	30.6000	0.0016	1.1682		0.0109	0.0213	0.0016
	β ₂	GVMI	16.8800	0.01400	1.1682	0.2020	0.0088	0.0158	0.0010
$^{156}_{64}Gd_{92}$		VAVM	99.2000	0.0740	1.1682	0.0583	-0.00003	0.0223	0.0017
SU(3)- SU(5)	β ₃	VMI	46.0000	0.09988	1.7152		0.0001	0.0234	0.0011
		GVMI	31.9000	0.0380	1.7152	0.3640	0.0002	0.0219	0.0009
		VAVM	68.0000	0.0740	1.7152	0.0200	-0.00008	0.0131	0.0004
		VMI	30.6000	0.0016	1.0660		0.0109	0.0117	0.0007
	γ_1	GVMI	52.2000	0.000356	1.1300	1.1080	-0.0240	0.0133	0.0007
		AVMV	81.0000	0.0040	1.0700	0.0460	-0.0009	0.0182	0.0014
		VMI	20.0000	0.0016	1.6000		0.0391	0.1198	0.0337
	γ2	GVMI	47.0000	0.8000	1.7660	1.0000	-0.00001	0.0676	0.0102
		VAVM	62.0000	0.0080	1.6900	0.0520	-0.0010	0.0730	0.0119

Table (1): To be continued (7/8).

Nucl ei	band	paramet er Model	<i>θ</i> ₀ /ħ ² (MeV) ⁻¹	C (MeV) 3	E _k (MeV)	Y (MeV)	0'	Standa rd deviati on	χ^2
		VMI	32.0540	0.0137 0	0.0000		0.0011	0.0002	0.00000
	g	GVMI	21.5800	0.0280	0.0000	0.3400	0.0011	0.0009	0.00001
		VAVM	70.4800	3.8800	0.0000	0.0490	-0.000001	0.0087	0.0005
		VMI	44.6000	0.8800	1.1073		0.0000	0.0228	0.0015
	β 1 8	GVMI	30.8000	1.8820	1.1073	0.3540	0.000005	0.0221	0.0014
$^{180}_{72}Hf_{10}$		VAVM	73.6000	1.8800	1.1073	0.0256	-0.000003	0.0192	0.0011
SU(3)	β 2	VMI	0.0600	0.0020	1.3157		1162	0.1643	0.0443
		GVMI	4.4000	0.4800	1.3157	0.0000	0.0244	0.1386	0.0301
		VAVM	99.8800	0.0800	1.3157	0.2000	-0.00002	0.1620	0.0426
		VMI	0.9990	0.0003	1.0600		1671	0.0514 7	0.0095
	γ_1	GVMI	42.2000	1.2800	1.1998	0.6800	-0.000004	0.0357	0.0049
		VAVM	99.0000	0.1801	1.1000	0.0640	-0.00001	0.0325	0.0039

Table (1): To be continued(8/8).

Nuclei	band	paramet er Model	<i>θ</i> ₀ /ħ ² (MeV) ⁻¹	C (MeV) ³	E _k (MeV)	Y (MeV)	0,	Standard deviation	χ ²
		VMI	12.0000	0.0010	0.0000		0.2894	0.1126	0.0739
	g	GVMI	13.2400	9.0000	0.0000	0.2000	0.00003	0.0242	0.0081
		VAVM	57.3440	0.0096	0.0000	0.06420	-0.0011	0.0059	0.0004
	β1	VMI	0.0400	0.0008	0.8820		9803	0.0768	0.0141
		GVMI	7.4000	0.4900	0.8820	0.2600	0.0024	0.1471	0.0535
$^{186}_{74}W_{112}$		VAVM	98.0000	0.0640	0.8820	0.1420	-0.00003	0.0806	0.0156
SU(3) -O(6)	β 2	VMI	10.0000	0.0006	1.1530		0.8333	0.1086	0.0265
		GVMI	3.0000	0.0040	1.1530	0.0300	8.7037	0.5383	0.0057
		VAVM	99.6000	0.0740	1.1530	0.1158	-0.00003	0.0935	0.0179
	γ1	VMI	20.0000	0.8800	0.6600		0.00007	0.0527	0.0096
		GVMI	30.4000	0.0080	0.7100	1.4500	-0.0084	0.0493	0.0077
		VAVM	70.0000	0.0001	0.4400	0.1600	-0.0583	0.0346	0.0038

Figure (1): The energy band crossing E(L) as a function of angular momentum L for chosen nuclei using (VMI) model. The parameters used for calculations are in table (1).

Figure (2): The energy band crossing E(L) as a function of angular momentum L for chosen nuclei using (VAVM) model. The parameters used for calculations are in table (1).

Figure (3): The energy band crossing E(L) as a function of angular momentum L for chosen nuclei using (GVMI) model .The parameters used for calculations are in table (1) .

Figure (4): The back bending $(29/\hbar^2)$ versus $(\hbar\omega)^2$ plot for chosen nuclei using (VMI) model . The parameters used for calculations are in table (1).

Figure (5): The back bending $(2\vartheta/\hbar^2)$ versus $(\hbar\omega)^2$ plot for chosen nuclei using (VAVM) model. The parameters used for calculations are in table (1).

Figure (6): The back bending $(29/\hbar^2)$ versus $(\hbar\omega)^2$ plot for chosen nuclei using (GVMI)model.

Figure (6): To be continued (2/2). The parameters used for calculations ¹⁵⁶ Gd and ¹⁸⁰Hf nuclei are in table (1).