On Some Types of S-Connected Spaces

Dunya M. Hamed Maysa'a Z. Salman

Department of Mathematics, College of Education, Al-Mustansirya University

Abstract:-

In this work, we introduce and study new types of S-connected spaces, namely (T-S-connected, T^* -S-connected and ST-S-connected) spaces, where T is an operator associated with the topology τ on a non-empty set X, and some new types of (T, L)-continuous functions. Several properties of these spaces and functions are proved.

المستخلص:-في هذا العمل سنقوم بتقديم دراسة أنواع جديدة من الفضاءات شبه المتصلة تدعى [الفضاء شبه المتصل-T، الفضاء شبه المتصل-T، الفضاء شبه المتصل-ST)، وبعض أنواع جديدة من الدوال المستمرة (T, L)، وبعض الصفات حول تلك الدوال والفضاءات سوف تبرهن.

1. Introduction

In 1963, N. Levin (N. Levin, 1963) introduced a new class of open sets is called semi-open sets in topology y and use these sets to study semi-continuity in topological spaces, see [4].

The concepts [operator topological space, T-open set, T^* -open set, (T, L)-continuous function and T-connected space] was introduced by Hadi J. and Ali in 2004 [1], Hadi J. and S. Al-Kuttibi in [2] and

In this work, we introduce and study new class S-connected spaces namely (T-S-connected space, T^* -S-connected space and ST-S-connected space), T is an operator associated with the topology τ on a non-empty set X, and define new class of (T, L)-continuous function types are ((T, L)-S-continuous function, (T^* , L)-S-continuous function and (ST, L)-S-continuous functions), and find the relation between these functions. Also

we will study continuous image of these functions with respect to (T-Sconnected space, T^* -S-connected and ST-S-connected space).

2. Some Basic Concepts

Some definition and basic concepts have been recalled in this section.

Definition (2-1),[5]:- A subset A of a topological space X is said to be semi-open if $A \subseteq CL$ (int (A)) and denoted by **S-open**.

Remark (2-2),[5]:- In any topological space, it is clear that every open set is S-open, but the converse is not in general. To illustrate that consider the following example.

Example (2-3):- Let R be the real line with the usual topology, and A = (a, b], where $a, b \in R$ and a < b, then A is S-open but is not open.

Remark (2-4),[5] [6]:- In any topological space X.

1. So(x) will denote the class of all S-open subsets of X.

2. The union of any collection of S-open subsets of X is S-open in X.

3. The intersection of two S-open sets in X is not S-open in general.

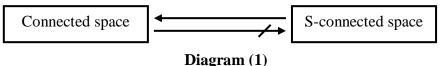
Definition (2-5),[6]:- A space X is called **connected space** if it is not the union of two disjoint non-empty open sets, otherwise is called **disconnected space**.

Definition (2-6),[4]:- A space X is said to be **S-disconnected space** if for each two non-empty S-open sets A, B in X, then: 1. $X = A \cup B$.

2. A \cap B = ϕ .

Definition (2-7),[4]:- A space X is said to be S-connected space if X is not disconnected.

Remark (2-8),[4]:- Since every (open) set is (S-open), then every S-connected space is connected, and we explain that by the following diagram:



Definition (2-9) [1]:- Let (X, τ) be a topological space and T: $P(X) \rightarrow P(X)$ be a function such that $W \subseteq T(W)$, $W \in \tau$, then we say that T is an operator associated with the topology τ on X, and the triple (X, τ, T) is called an **operator topological space** and denoted by (O.T.S).

Definition (2-10) [1]:- Let (X, τ, T) be an operator topological space and K \subseteq K, then K is said to be **T-open set**, if for each $x \in K$, there exists $G \in \tau$ such that, $x \in G \subseteq T(G) \subseteq K$. So every T-open set is open.

JOURNAL OF COLLEGE OF EDUCATION 2016....... NO.3

Example (2-11):- Let (X, τ, T) be a topological space and let T: $P(X) \rightarrow P(X)$ be a function defined as follows: T(A) = cL int A. If A is an open set in X, then A \subseteq cL int A = T(A), then T is an operator associated with the topology τ on X and the triple (X, τ, T) be an operator topological space.

Now, if A is not open and satisfies $A \subseteq T(A) = cL$ int A, then A is called S-open.

Definition (2-12),[3]:- Let (X, τ, T) be an operator topological space X is said to be T-connected if it is not the union of two disjoint non-empty T-open subsets of X.

Definition (2-13),[3]:- Let $(X, \tau, T) \rightarrow (Y, \sigma, L)$ be a function, then f is said to be (T, L)-continuous function if the inverse of every L-open in Y is T-open in X.

Theorem (2-14),[3]:- Let f: $(X, \tau, T) \rightarrow (Y, \sigma, L)$ be a (T, L)-continuous function. If X is T-connected, then Y is L-connected.

Now we introduce new class of open set in O.T.S by the following definition.

Definition (2-15):-Let(X, τ , T) be an operator topological space and A \subseteq X, then A is called:

1. T-S-open set. If A is S-open set and $A \subseteq T(A)$.

2. T^* -S-open set. If $\forall x \in A$ there exists S-open set G in X such that $x \in G \subseteq int T(G) \subseteq A$.

3. ST-S-open set. If $\forall x \in A$ there exists S-open set G in X such that , $x \in G \subseteq int T(G) \subseteq A$.

From above definition, we can get the following implications. It shows the relation between these types of T-S-open sets.

 T^* -S-open \rightarrow ST-S-open \rightarrow S-open \rightarrow T-S-open

Next, we introduce new class of S-connected space upon the class of T-Sopen sets.

Definition (2-16) [3] :- Let (X, τ, T) be an operator topological space, we say:

1. X is T-S-disconnected if it is the union of two disjoint non-empty T-Sopen subsets of X. Otherwise, X is called T-S-connected space.

2. X is T^* -S-disconnected if it is the union of two disjoint non-empty T^* -S-open subsets of X. Otherwise, X is called T^* -S-connected space.

3. X is ST-S-disconnected if it is the union of two disjoint non-empty ST-S-open subsets of X. Otherwise, X is called ST-S-connected space.

From above definitions, we can get the following diagram. It shows the relation between these types of S-connected spaces.

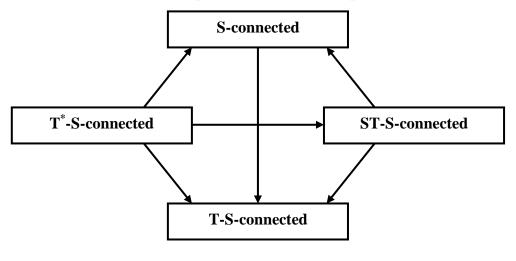


Diagram (2)

Now we introduce some new types of (T, L)-continuous functions:

Definition (2-17):-

1. (T, L)-S-continuous: if the inverse of every L-S-open set in Y is an T-S-open in X. 2. (T^*, L) -S-continuous: if the inverse of every L-S-open set in Y is an T^* -S-open in X.

3. (ST, L)-S-continuous: if the inverse of every L-S-open set in Y is an ST-S-open in X.

3. Main Results

In this section we study and discuss the relation between ((T, L)-Scontinuous function, (T^* , L)-S-continuous function, (ST, L)-S-continuous function), and we will study continuous image of these functions with respect to (T-S-connected, T^* -S-connected and ST-S-connected) spaces.

Proposition (3-1):- Every (T^*, L) -S-continuous function is (T, L)-S-continuous.

Proof:-

Let f: $(X, \tau, T) \rightarrow (Y, \sigma, L)$ be an (T^*, L) -S-continuous. T-P f is (T, L)-S-continuous function. Let A be an L-S-open set in Y. Since f is (T^*, L) -S-continuous

Then, $f^{1}(A)$ is an T^{*}-S-open set in X, by definition (2-15) (every T^{*}-S-open is T-S-open) we get , $f^{1}(A)$ is an T-S-open in X. Thus f is (T, L)-S-continuous function.

JOURNAL OF COLLEGE OF EDUCATION..... 2016.......NO.3

Proposition (3-2):- Every (T^{*}, L)-S-continuous function is (ST, L)-S-continuous.

Proof:-

Let f: $(X, \tau, T) \rightarrow (Y, \sigma, L)$ be an (T^*, L) -S-continuous, and A be an L-Sopen set in Y. Since f is (T^*, L) -S-continuous function .Then, $f^{-1}(A)$ is an T^* -S-open set in X

By definition (2-15) (every T^* -S-open is ST-S-open) we get, $f^1(A)$ is an ST-S-open in X. Thus f is (ST, L)-S-continuous function.

Proposition (3-3):- Every (ST, L)-S-continuous function is (T, L)-S-continuous.

Proof:-

Let f: $(X, \tau, T) \rightarrow (Y, \sigma, L)$ be an (ST, L)-S-continuous function, and A be an L-S-open set in Y. Since f is (ST, L)-S-continuous. Then, $f^{1}(A)$ is an ST-S-open set in X

By definition (2-15) (every ST-S-open is T-S-open) we get, $f^{-1}(A)$ is an T-S-open in X

Thus f is (T, L)-S-continuous function.

The following diagram shows the relation between (T, L)-continuous types.

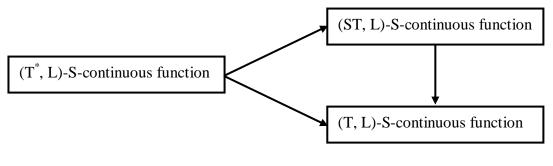


Diagram (3)

Summarized the last proposition where the converse is not necessary true. Now, we prove several proposition about the image of these functions types w.r.s (T-S-connected, T^* -S-connected and ST-S-connected) spaces.

Proposition (3-4):- If f: $(X, \tau, T) \rightarrow (Y, \sigma, L)$ is a (T, L)-S-continuous onto function and if X is T-S-connected, then Y is L^{*}-S-connected space.

Proof:-

Suppose Y is L^{*}-S-disconnected space. Then, there exist two disjoint nonempty L^{*}-S-open sets A, B in Y such that $Y = A \cup B$, by definition (2-15) \Rightarrow (every L^{*}-S-open is L-S-open) \Rightarrow A and B are also L-S-open sets in Y. Since f is (T, L)-S-continuous onto function. Then, f¹(A), f¹(B) are two T-S-open sets in X such that

 $X=f^1(Y)=f^1(A\,\cup\,B)\,=f^1(A)\,\cup\,f^1(B)\quad\text{,}\quad\text{where }f^1(A)\,\cap\,f^1(B)=\phi$

Thus, X is T-S-disconnected space (which are contradiction).Since X is T-S-connected space. Hence, Y must be L^* -S-connected space

Proposition (3-5):- If f: $(X, \tau, T) \rightarrow (Y, \sigma, L)$ is a (T, L)-S-continuous onto function and if X is T-S-connected, then Y is ST-S-connected space.

Proof:-

Suppose Y is ST-S-disconnected space. Then, there exist two disjoint nonempty ST-S-open sets A, B in Y such that $Y = A \cup B$, by definition (2-15) \Rightarrow (every SL-S-open is L-S-open) \Rightarrow A and B are also L-S-open sets in Y .Since f is (T, L)-S-continuous onto function .Then, f¹(A), f¹(B) are two T-S-open sets in X such that,

 $X = f^{1}(Y) = f^{1}(A \cup B = f^{1}(A) \cup f^{1}(B) \quad , \quad \text{where } f^{1}(A) \cap f^{1}(B) = \phi$ Thus, X is T-S-disconnected space (which are contradiction)

Since X is T-S-connected space. Hence, Y must be ST-S-connected space Similarly, we prove the following proposition:

Proposition (3-6):- If f: $(X, \tau, T) \rightarrow (Y, \sigma, L)$ is a (T, L)-S-continuous onto function and if X is T-S-connected, then Y is L-S-connected space.

Corollary (3-7):- If f: $(X, \tau, T) \rightarrow (Y, \sigma, L)$ be (ST, L)-S-continuous onto function and if X is T-S-connected, then Y is $[L^*$ -S-connected space, SL-S-connected space] respectively.

Proof:-

This follows from Proposition (3-3), then f is (T, L)-S-continuous, and by using Propositions (3-4), (3-5) and (3-6) we have Y is (L^* -S-connected, SL-S-connected and L-S-connected) spaces respectively.

Corollary (3-8):- If f: $(X, \tau, T) \rightarrow (Y, \sigma, L)$ be (T^*, L) -S-continuous onto function and if X is T-S-connected, then Y is $[L^*$ -S-connected space, SL-S-connected space] respectively.

Proof:- This follows from Proposition (3-2) and Corollary (3-7).

Proposition (3-9):- If f: $(X, \tau, T) \rightarrow (Y, \sigma, L)$ be (ST, L)-S-continuous onto function and if X is ST-S-connected space, then Y is L^{*}-S-connected space. **Proof:-**

Suppose Y is L-S-disconnected space. Then, there exist two disjoint nonempty L^{*}-S-open sets A, B in Y such that $Y = A \cup B$, by definition (2-15) \Rightarrow (every L^{*}-S-open is L-S-open) \Rightarrow A and B are also L-S-open sets in Y.Since f is (ST, L)-S-continuous onto function. Then, f¹(A), f¹(B) are two ST-S-open sets in X such that

 $X = f^{1}(Y) = f^{1}(A \cup B) = f^{1}(A) \cup f^{1}(B) \qquad \text{where } f^{1}(A) \cap f^{1}(B) = \phi$

Thus, X is ST-S-disconnected space (which are contradiction)Since X is ST-S-connected space. Hence, Y must be L^* -S-connected space.

Proposition (3-10):- If f: $(X, \tau, T) \rightarrow (Y, \sigma, L)$ be (ST, L)-S-continuous onto function and if X is ST-S-connected space, then Y is SL-S-connected space.

Proof:- Suppose Y is ST-S-disconnected space. Then, there exist two disjoint non-empty SL-S-open sets A, B in Y such that $Y = A \cup B$, by definition (2-15) \Rightarrow (every SL-S-open is L-S-open) \Rightarrow A and B are also L-S-open sets in Y. Since f is (ST, L)-S-continuous onto function. Then, f ¹(A), f¹(B) are two ST-S-open sets in X such that $X = f^{1}(Y) = f^{1}(A \cup B) = f^{1}(A) \cup f^{1}(B)$ where $f^{1}(A) \cap f^{1}(B) = \phi$

JOURNAL OF COLLEGE OF EDUCATION..... 2016.......NO.3

Thus, X is ST-S-disconnected space (which are contradiction)Since X is ST-S-connected space. Hence, Y must be SL-S-connected space.

Similarly, we prove the following proposition:

Proposition (3-11):- If f: $(X, \tau, T) \rightarrow (Y, \sigma, L)$ be (ST, L)-S-continuous onto function and if X is ST-S-connected, then Y is L-S-connected space.

Corollary (3-12):- If f: $(X, \tau, T) \rightarrow (Y, \sigma, L)$ is (T^*, L) -S-continuous onto function and if X is ST-S-connected, then Y is $[L^*$ -S-connected space, SL-S-connected space] respectively.

Proof:-This follows from Proposition (3-2) (every (T*, L)-S-continuous is (ST, L)-S-continuous) \Rightarrow f is (ST, L)-S-continuous \Rightarrow by using Propositions (3-9), (3-10) and (3-11) we get Y is (L*-S-connected, SL-S-connected and L-S-connected) spaces respectively.

Proposition (3-13):- If f: $(X, \tau, T) \rightarrow (Y, \sigma, L)$ be (T^*, L) -S-continuous onto function and if X is T^* -S-connected space, then Y is L^* -S-connected space.

Proof:-

Suppose Y is L^{*}-S-disconnected space. Then, there exist two disjoint nonempty L^{*}-S-open sets A and B in Y such that $Y = A \cup B$. by definition (2-15) \Rightarrow (every L^{*}-S-open is L-S-open) \Rightarrow A and B are L-S-open sets in Y Since f is (T^{*}, L)-S-continuous onto function. Then, f¹(A), f¹(B) are two T^{*}-S-open sets in X such that $X = f^{1}(Y) = f^{1}(A \cup B) = f^{1}(A) \cup f^{1}(B)$

where $f^{1}(A) \cap f^{1}(B) = \phi$. Thus, X is T^{*}-S-disconnected space (which are contradiction)Since X is T^{*}-S-connected space. Hence, Y must be L^{*}-S-connected space.

Proposition (3-14):- If f: $(X, \tau, T) \rightarrow (Y, \sigma, L)$ be (T^*, L) -S-continuous onto function and if X is T^* -S-connected space, then Y is SL-S-connected space.

Proof:-

Suppose Y is SL-S-disconnected space .Then, there exist two disjoint nonempty SL-S-open sets A, B in Y such that $Y = A \cup B$, by definition (2-15) \Rightarrow (every SL-S-open is L-S-open) \Rightarrow A and B are L-S-open sets in Y. Since f is (T^{*}, L)-S-continuous onto function. \Rightarrow f¹(A), f¹(B) are two T^{*}-Sopen sets in X such that

$$X = f^{1}(Y) = f^{1}(A \cup B) = f^{1}(A) \cup f^{1}(B) \qquad \text{where } f^{1}(A) \cap f^{1}(B) = \phi$$

Thus, X is T^* -S-disconnected space (which are contradiction). Since X is T^* -S-connected space. Hence, Y must be SL-S-connected space.

Proposition (3-15):- If f: $(X, \tau, T) \rightarrow (Y, \sigma, L)$ be (T^*, L) -S-continuous onto function and if X is T^* -S-connected space, then Y is L-S-connected space.

Proof:-

Suppose Y is L-S-disconnected space. Then, there exist two disjoint nonempty L-S-open sets A, B in Y such that $Y = A \cup B$. Since f is (T^*, L) -Scontinuous onto function. $\Rightarrow f^1(A), f^1(B)$ are two T^{*}-S-open sets in X such that

 $X = f^{1}(Y) = f^{1}(A \cup B) = f^{1}(A) \cup f^{1}(B) \quad \text{where } f^{1}(A) \cap f^{1}(B) = \phi$ Thus, X is T^{*}-S-disconnected space (which are contradiction)Since X is T^{*}-

S-connected space. Hence, Y must be L-S-connected space.

JOURNAL OF COLLEGE OF EDUCATION...... 2016.......NO.3

References

- 1. Hadi, J. Mustafa and Ali, A. Hassan, "T-Open Sets", M.Sc. Thesis, Muuta University, Jordan (2004).
- 2. Hadi, J. Mustafa and S. Al-Kuttibi, "T^{*}-Open Sets", (Submitted to Kufa Conference).
- 3. Hadi, J. Mustafa and Heeam, H. K., "T^{*}-Connected Spaces and T^{*}-Compact Spaces", (Submitted).
- 4. Mustafa, H. I. "On Connected Functions", M.Sc., University of Al-Mustansirya, (2001).
- N. Levin, "Semi-Open Sets and Semi-Continuity in Topological Space", Amer. Math. Monthly 70 (1963), 36-41.
- 6. S. Willard, "General Topology", Addison Wesley Publishing Company Reading (1970).