حول التقارب – T للشبكة On T-Convergence Of Net

د. حيدر جبر علي	أ.د. هادي جابر مصطفى
قسم الرياضيات /كلية العلوم	قسم الرياضيات / كلية التربية
الجامعة المستنصرية	الجامعة المستنصرية

<u>المستخلص</u>

في هذا البحث قمنا بطرح ودراسة بعض الخواص التبولوجية للتقارب –T بالنسبة للشبكة 'حيث ان T هو عبارة عن مؤثر مقترن بالتبولوجي T والمعرف على المجموعة غير الخالية X .

Abstract

In this paper we introduce and study properties of T-convergence of net , where T is an operator associated with the topology Γ on a nonempty set X.

Introduction

Let (X, Γ, T) be an operator topological space where X is a nonempty set and Γ is a topology on X and T is an operator associated with the topology with the topology Γ on X.

We introduce and study T-convergence of net in (X, Γ, T) , we obtain the theory of θ -convergence of net in $(X, \Gamma)[1]$ as a special case when T is the usual closure operator.

1-Preliminaries

The symbols X and Y denote topological spaces with no separation axioms assumed unless explicitly stated.

Definition 1-1[2]:

Let (X, Γ) be a topological space a map $T : \Gamma \to P(X)$ is called an operator associated with Γ if $U \subseteq T(U)$ where $U \in \Gamma$.

Definition 1-2[2]:

Let (X, Γ, T) , (Y, Γ^*, L) be two operator topological spaces. A map f: $(X, \Gamma, T) \rightarrow (Y, \Gamma^*, L)$ is said to be (T, L) continuous at $x \in X$ if for each $V \in \Gamma^*$, $f(x) \in V$, there exists $U \in \Gamma$, $x \in U$ such that $f(T(U)) \subseteq L(V)$. Notice that when T and L are the closure operators we get the definition [3] of θ –continuous function f: $(X, \Gamma) \rightarrow (Y, \Gamma^*)$.

2- T- convergence of net

Definition 2-1[4]:

A net in a set X is a function P: $\Lambda \to X$, where Λ is some directed set. A subset of a net P: $\Lambda \to X$, is the composition $P \circ \varphi$, where $\circ \varphi \colon M \to \Lambda$ is An increasing cofinal function from a directed set M into 6 .that is,

- a) $\varphi(\mu_1) \leq \varphi(\mu_2)$ wherever $\mu_1 \leq \mu_2 \varphi$ is increasing).
- b) for each $\lambda \in \Lambda$, there is some $\mu \in M$ such that $\lambda \leq \varphi(\mu)$, (φ is cofinal in Λ).

Definition 2-2:

Let (X, Γ, T) be operator topological space, a net $(x_{\alpha})_{\alpha \in \Omega}$ in X is said to be is said to be T- converge to a point $x \in X$ if and only if for every open set U containing $x, \exists \alpha_0 \in \Omega, \exists x_{\alpha} \in T(U), \forall \alpha \ge \alpha_0$ and denoted by $x_{\alpha} \xrightarrow{T} x$ x and x is called T- limit point, also $x \in X$ is called T- cluster point to a net $(x_{\alpha})_{\alpha \in \Omega}$ in X if and only if $\forall U \in \Gamma$ with $x \in U$ and $\forall \alpha_0 \in \Omega$, $\exists \alpha_0 \in \Omega$ with $\alpha \ge \alpha_0$ such that $x_{\alpha} \in T(U)$ and denoted by $x_{\alpha} \xrightarrow{T} x$

Remark 2-3:

Let (X, Γ, T) be an operator topological space and $(x_{\alpha})_{a \in \Omega}$ be a net in X, x $\in X$ then:

1. If $(x_{\alpha})_{\alpha \in \Omega}$ converges to point x, then $(x_{\alpha})_{\alpha \in \Omega}$ is T-converge to x.

2. If $(x_{\alpha})_{\alpha \in \Omega}$ is T- converge to x, then x is T- cluster point to $(x_{\alpha})_{\alpha \in \Omega}$. the converse of above (1 and 2) is not true in general. To show that we give the following examples:

Example 2-4:

- i. If X = R the set of real numbers and Γ is the co-countable topology, every sequence $\{S_n\}$ in X with $S_n \neq S_m$ whenever $n \neq$ m is not convergent. It follows that every sequence $\{S_n\}$ in X and every $S_0 \in X$, U (R- $\{S_n\}$)U $\{S_0\}$ is open neighborhood of S_0 and U has at most finite terms of $\{S_n\}$ i.e., $\{S_n\}$ is not convergent. Now it is clear that $\{\frac{n}{n+1}\}$ is divergent but T : $\Gamma \rightarrow$ P(X) is defined by T(U) = R for each U $\in \Gamma$, then $\{\frac{n}{n+1}\}$ is Tconvergent.
- ii. Let (R, Γ_u, T) be an operator topological space where R is the set of all real numbers, Γ_u is the usual topology on R and T is closure operator. Now the net $(n+(-1)^n n)_{n \in N}$ has 0 as T- cluster point but 0 is not a T-limit point.

Theorem 2-5:

Let (X, Γ, T) be an operator topological space and let $(x_{\alpha})_{\alpha \in \Omega}$ be a net in X and suppose x_{α} is T-converge to x, then every subnet of $(x_{\alpha})_{\alpha \in \Omega}$ is T-converge to X.

Proof:

Let $(x_{\alpha\beta})_{\beta \in D}$ a subnet of $(x_{\alpha})_{\alpha \in \Omega}$, if $U \in \Gamma$ with $x \in U$, since $x_{\alpha} \xrightarrow{T} x$, then $\exists \alpha_0 \in \Omega$ such that $x_{\alpha} \in T(u) \forall \alpha \ge \alpha$, but $(x_{\alpha\beta})_{\beta \in D}$ is a subnet of $(x_{\alpha})_{\alpha \in \Omega}$ and $\alpha_0 \in \Omega$, $\exists \beta_0 \in D$ such that $\alpha_{\beta_0} \ge \alpha_0$, i.e., $x_{\alpha_{\beta_0}} \in T(u)$, then $\exists \beta_0 \in D$ such that $\forall \beta \ge \beta_0$ and from definition of subnet $\alpha_{\beta} \ge \alpha_{\beta} \ge \alpha_0$ so $\alpha_{\beta} \ge \alpha_0$, then $x_{\alpha_{\beta}} \in T(u)$. Therefore, $(x_{\alpha\beta})_{\beta \in D}$ is T-converge to *x*.

Theorem 2-6:

Let (X, Γ, T) be an operator topological space, let $A \subseteq Y$, if A is T-open, then no net in $X \setminus T(A)$ can T-converge to a point in A.

Proof:

Let A be a T-open set in X and suppose that there is a net $(x_{\alpha})_{\alpha \in \Omega}$ in X \ T(A) which T-converge to $x \in A$, since A is T-open we can choose $U \in \Gamma$ with $x \in U$ such that $x \in T(U) \subseteq A \subseteq T(A)$, i.e., $\exists \alpha_0 \in \Omega$ such that , $x_{\alpha} \in T(A)$, but $(x_{\alpha}) \in X \setminus T(A)$ which is a contradiction

Corollary 2-7:

Let (X, Γ, T) be operator topological space and $A \subseteq X$, if A is T-closed then no net in $X \setminus (T(X \setminus A))$ can T-converge to a point in $X \setminus A$.

Theorem 2-8:

Let (X, Γ, T) be operator topological space and $A \subseteq X$, if there is no net in $X \setminus A$ can T-converge to a point in A, then A is T-open.

Proof:

suppose A is not T-open, then $\exists x \in A$ and $\forall U \in \Gamma \ni x \in U$ and $T(U) \not\subset$ A then $T(U) \cap (X \setminus A) \neq \phi$, pick $x_{T(u)} \in T(U) \cap (X \setminus A)$, let $T(O_x) = \{T(U) : U \in \Gamma, x \in U\}$, then $T(O_x)$ is directed by the inclusion relation \subseteq , then

 $(X_{T(u)})_{T(u) \in T(Ox)}$ is a net in $X \setminus A$ and it is T-converge to x, but this is contradiction, so A is T-open.

Theorem 2-9:

Let f: $(X, \Gamma, T) \rightarrow (Y, \Gamma^*, L)$ be a function from an operator topological space (X, Γ, T) to operator topological space (Y, Γ^*, L) where T and L are monotone operators, let $(x_{\alpha})_{\alpha \in \Omega}$ be a net in X then is f is (T, L) - continuous at x \in X if and only if $f(x_{\alpha})$ is L- converge to f(x), whenever $(x_{\alpha})_{\alpha \in \Omega}$ is T-converge to x.

Proof:

Let f be a (T,L) – continuous at x and let $(x_{\alpha})_{\alpha \in \Omega}$ is T-converge to x, let V $\in \Gamma^*$ such that $f(x) \in V$, since f is (T,L) – continuous, then $\exists U \in \Gamma$, $x \in U \ni f(T(U)) \subseteq L(V)$ but $(x_{\alpha})_{\alpha \in \Omega}$ is T-converge to x, then $\exists \alpha_0 \in \Omega \ni x_{\alpha} \in T(U) \forall \alpha \ge \alpha_0$, then $f(x_{\alpha}) \in f(T(U)) \subseteq L(V) \forall \alpha \ge \alpha_0$, thus f (x_{α}) is L- converge to f(x). Conversely, suppose f is not (T,L)- continuous at x, i.e. $\exists V \in \Gamma^*$, $f(x) \in V$ such that $\forall U \in \Gamma$, $x \in U$, then $f(T(U)) \not\subset L(V)$ so pick $x_{T(u)} \in T(U) \ni f(X_{T(u)}) \notin L(V)$, then $(X_{T(u)})_{T(u) \in T(Ox)}$ is a net in X and $X_{T(u)}$ is T- converge to x and thus $f(X_{T(u)})$ is is L- converge to f(x), then $f(x_{T(u)}) \in L(V) \forall T(U) \ge T(U_0)$ for some $T(U_0) \in T(O_x)$ but this is contradiction, then f is (T,L)- continuous at x. **Theorem 2-10:**

Let (X, Γ, T) be an operator topological space and $A \subset X$. then $a \in X$ is a T-limit point of A if and only if and only if there exists a net F:D $\rightarrow X$ which is in A\ {a} and T- converge to a.

proof:

suppose \exists net F:D \rightarrow X which is A\ {a} and T- converge to a, if U $\in \Gamma_x$ with a \in U, then F is eventually in T(U) so that T(U) \cap A\ {a} $\neq \phi$. It follows that a is a T-limit point of A. Conversely ,suppose a is a T-limit point of A, then every open set U in X containing a ,T(U) containing at least one point x \in A such that x \neq a , now let D = {(x, T(U)): U is an open set containing a and x \in A \cap T(U), x \neq a } we define (x₁, T(U₁)) \geq (x₂,T(U₂)) if and only if T(U₁) \subseteq T(U₂). It is clear that (D, \geq) is a directed set , we may define a net F : D \rightarrow X as F(x , T(U)) = x , then by its definition the net F is in A\ {a}. we claim that F is T- converge to a , thus if U \in Γ with a \in U, then \exists x \in A\ {a} \cap T(U₀) . put $\alpha_0 = (x_0, T(U_0)) \in$ D , Now $\forall \alpha = (x, T(U)) \geq \alpha_0 = (x_0, T(U))$, T(U) \subseteq T(U₀) so that F(α) = x \in T(U) \subseteq T(U₀), therefor , F is T-converge to a.

Theorem 2-11:

Let (X, Γ, T) be an operator topological space and let $\{X\alpha\}_{\alpha\in D}$ be a net in X, $a \in X$, then $x_{\alpha} \propto^{T} a$ if and only if $\exists a \text{ subnet} \{x_{\alpha\beta}\}_{\beta\in D}$ of $\{X\alpha\}_{\alpha\in D}$ which T-converge to a.

Proof:

Assume that $a \in X$ is a T-cluster point of a net $\{X\alpha\}_{\alpha\in D}$. To show that \exists subnet of $\{X\alpha\}_{\alpha\in D}$. which T-converge to a , put $D_1 = \{(\alpha, T(U))\}$: where $U \in \Gamma$ with $a \in U$ and $x_\alpha \in T(U)\}$. Cleary that $D_1 \neq \phi$ (since $x_\alpha \propto a$), now ordered D_1 by the relation \geq which is defined by $(\alpha_1, T(U_1)) \geq (\alpha_2, T(U_2))$ iff $\alpha_1 \geq \alpha_2$ and $T(U_1) \subseteq T(U_2)$. It is easy that (D_1, \geq) is directed set and the map x: $D_1 \rightarrow X$ such that x $(\alpha, T(U)) = x_\alpha$ is subnet of $\{x_\alpha\}_{\alpha\in D}$. To prove that $\{x(\alpha, T(U))\}_{(\alpha, T(U)) \in D_1}$ is T-converges to a . If $U_0 \in \Gamma$ with

 $a \in U_0, \text{ since } \mathbf{x}_{\alpha} \propto^{T} \text{ a, then } \forall \alpha \in \mathbf{D}, \exists \alpha_0 \in \mathbf{D} \text{ with } \alpha_0 \geq \alpha \text{ such that } \mathbf{X}_{\alpha 0} \in \mathbf{T}(\mathbf{U}_0) .$ $\text{Put } \beta_0 = (\alpha, \mathbf{T}(\mathbf{U}_0)) \in \mathbf{D}_1 \text{ so } \forall \beta = (\alpha, \mathbf{T}(\mathbf{U})) \geq \beta_0 = (\alpha_0, \mathbf{T}(\mathbf{U}_0)) \text{ if and only }$ $\text{if } \mathbf{T}(\mathbf{U}) \subseteq \mathbf{T}(\mathbf{U}_0) \text{ , then } \mathbf{x}_{\beta=(\alpha, \mathbf{T}(\mathbf{U}))} = \mathbf{x}_{\alpha} \in \mathbf{T}(\mathbf{U}) \subseteq \mathbf{T}(\mathbf{U}_0).$ $\text{Therefore, } \{\mathbf{x}(\alpha, \mathbf{T}(\mathbf{U}))\}_{(\alpha, \mathbf{T}(\mathbf{U})) \in \mathbf{D}_1} \text{ is } \mathbf{T} \text{-converges to } \mathbf{a} \text{ .Conversely, }$ $\text{suppose that } \{\mathbf{x}_{\alpha\beta}\}_{\beta\in\mathbf{D}_1} \text{ is a subnet of a net } \{x_{\alpha}\}_{\alpha\in\mathbf{D}} \text{ and } \mathbf{x}_{\alpha\beta} \xrightarrow{T} \alpha \in \mathbf{X}, \text{ to show that } \mathbf{x}_{\alpha} \propto \mathbf{a}$ $\text{Let } \mathbf{U} \in \Gamma \text{ with } \mathbf{a} \in \mathbf{U}, \alpha_0 \in \mathbf{D} \text{ by definition of subnet } \exists \beta_0 \in \mathbf{D}_1 \text{ such that }$ $\alpha_{\beta} \geq \alpha_0, \text{ but } \mathbf{x}_{\alpha\beta} \xrightarrow{T} \alpha \in \mathbf{T}(\mathbf{U}), \text{ then } \exists \beta_1 \in \mathbf{D}_1 \text{ such that } \mathbf{x}_{\alpha\beta} \in \mathbf{T}(\mathbf{U}) \forall \beta$ $\geq \beta_1 \text{ , since } \beta_0, \beta_1 \in \mathbf{D}_1, \text{ then } \exists \beta_2 \in \mathbf{D}_1 \text{ such that } \beta_2 \geq \beta_0 \text{ (i.e. } \alpha_{\beta_2} \geq \alpha_{\beta_0} \geq \beta_1 \text{ therefore, } \text{ a is } \mathbf{T} \text{-cluster point of } \{\mathbf{x}_{\alpha}\}_{\alpha\in\mathbf{D}. \}$

Definition 2-12[2]:

Let (X, Γ, T) be an operator topological space, we say that (X, Γ) is a T-Hausdorff space if for every pair x, y of distinct points of X there exist two open sets U,V such that $x \in U$, $y \in V$ and $T(U) \cap T(V) = \phi$.

Clearly if the space (X, Γ) is T- Hausdorff, it is also Hausdorff, but the converse is not true in general for example : if X=R, the real line with usual topology then (X, Γ) is Hausdorff and if T: $\Gamma \rightarrow P(X)$ which is defined by T(U) = R for each $U \in \Gamma$, then (X, Γ, T) is not T- Hausdorff.

Theorem 2-13:

Let (X, Γ, T) be an operator topological space , X is T- Hausdorff space if and only if every T-convergent net in X has unique T-limit point.

Proof:

Given X is T- Hausdorff and suppose \exists a net $\{X\alpha\}_{\alpha\in D}$ in X such that $x_{\alpha} \xrightarrow{T} x_0$ and $x_{\alpha} \xrightarrow{T} y_0$, $x_0 \neq y_0$, thus $\exists U, V \in \Gamma$ with $x_0 \in U$ and y_0

 \in V such that T (U) \cap T(V) = ϕ . Since $x_{\alpha} \xrightarrow{T} x_0 \in$ U, thus $\exists \alpha_1 \in$ D

such that $x_{\alpha} \in T(U) \forall \alpha \ge \alpha_1$, also $x_{\alpha} \xrightarrow{T} y_0 \in V$, then $\exists \alpha_2 \in D$ such that $x_{\alpha} \in T(V) \forall \alpha \ge \alpha_2$, but $\alpha_1, \alpha_2 \in D$, then $\exists \alpha_3 \in D$ such that $\alpha_3 \ge \alpha_1$ and $\alpha_3 \ge \alpha_2$ so $\forall \alpha \ge \alpha_3, x_{\alpha} \in T(U)$ and $x_{\alpha} \in T(V)$, then $x_{\alpha} \in T(U) \cap T(V)$, $\forall \alpha \ge \alpha_3$ i.e.,

T(U) ∩T(V) ≠ φ.which is a contradiction. Therefore, $x_{\alpha} \xrightarrow{T} x_0 = y_0$. Conversely, suppose X is not T- Hausdorff, then ∃ $x_0, y_0 \in X$ and $x_0 \neq y_0$, such that for each U, V ∈ Γ with $x_0 \in U$ and $y_0 \in V$ and T(U) ∩T(V) ≠ φ.

Let N_{x0} , $N_{y0} = \{$ (T(N), (T(M)): N,M are neighborhoods of x_0 and y_0 respectively $\}$. It is clear that (N_{x_0}, \subseteq) and (N_{y_0}, \subseteq) are directed sets , hence for each $N \in N_{x_0}$ and $N^* \in N_{y_0}$, $N \cap N^* \neq \phi$ we define the directed set $(N_{x_0} N_{y_0}, \succ)$ where \succ is a relation on $N_{x_0} N_{y_0}$ defined by $(N_1 N^*)$ N^*_{1} , $\succ (N_2 N^*_2) \iff N_1 \subseteq N_2$ and $N^*_{1} \subseteq N^*_{2}$ also define the net $x:(N_{x_0} N^*_{y_0}, \succ) \Rightarrow X$ by $x((N N^*)) \in (N \cap N^*) \neq \phi$.

Now if U is an open subset of X with $x_0 \in T(U)$, thus $T(U) \in N_{x_0}$ and we take a fixed $N^* \in N_{y_0}$, and hence $\alpha_0 = (T(U), N^*) \in N_{x_0}^{-x} N_{y_0}$, also since x $(\alpha_0) = x T(U), N^* \in (T(U) \cap N^*) \subseteq T(U)$, we have that for each α $= (N_I, N^*_I) \rightarrow ((T(N), N^*) = \alpha_0 \leftrightarrow N_I \subseteq T(U) \text{ and } N_1^* \subseteq N^* \text{ thus } x(\alpha) =$ $x(N, N^*_I) \in (N_I \cap N^*_I) \subseteq (T(U) \cap N^*) \subseteq T(U)$, so x $_{\alpha} \in T(U), \forall \alpha \rightarrow \alpha_0$, then $x_{\alpha} \xrightarrow{T} x_0$ By the same way we show that $x_{\alpha} \xrightarrow{T} y_0$ which is a contradiction. therefore, X is T- Hausdorff

References

- [1] Baker A. and Jabar B., "On θ- convergence of net and filter", Al-Mustansiriya Journal of Science. Vol.17 N.2 (2006).
- [2] Rosas E. and Vielma J., "Operator compact and Operator Connected Spaces", Scie. of Math .Vol. No, (1998).
- [3] Saleh M., "On θ- continuity and strong θ- continuty ", Applied . Mathematics E-notes , pp. (42-48), (2003).
- [4] Willard S., "General Topology", Addison Wesley London, (1970).