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Abstract

In the present paper we study the generalized order and generalized type
of special monogenic functions having slow growth. The studied
characterizations of generalized order and type of special monogenic
functions have been obtained in terms of their Taylor's series coefficients.
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1- Introduction

Firstly, following Constales, Almeida and Krausshar (see [1] and [2]), we
give some definitions and associated properties .Let m= (my,m,,...,m,) €
N§ be the n-dimensional multi-index and x € R" then we define
X"=x™ . % ™, mi=my! ...mg! m| = mg+..+m, o (D)

By {ei, e,...en} we denote the canonical basis of the Euclidean vector space
R". The associated real Clifford algebra Cl, is free algebra generated by R"
modulo x°=-||x||%eo , where e, is the neutral element with respect to
multiplication of the Clifford algebra CI, .In the Clifford algebra CI,
following multiplication rule holds :

eiejtejei=-2 9ij , 1,j =1,2,...,n. Where §; is kronecker symbol. ... (2)

A Dbasis for Clifford algebra Cl, is given by the set {e o:AC {1,2,...,n)},
with e A=€1,€),...,€], .

Where 1< I1< I...< 1:<n ,ey=€o=1.Each a € Cl, can be written in the form

a=Y.Ac(1,2,,n) AA €A,

With ap € R.The conjugation in Clifford algebra Cl, is defined by
a=Yac(12,n)3a €a Wherees=e;_e_ ...e, and g=-¢ for j=1,
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2...,n, ep=ep=1. The linear subspace span g{1,e1,€z,...,en} € ClI, is the so
called space of Para vectors z = X + Xy €1 +x, e, +...... +x, e, Which we
simply identify with R™: Here Xxo=Sc(z) is scalar part and
X=X181+X.6,+. .. +xe,=Vec(z) is vector part of Paravector z: The Clifford
norm of an arbitrary a= Yac(i2.naa€a IS given by |la] =

Xac2,.n laal )1/2 The generalized Cauchy—Riemann operator in R™*
Is given by D= —+Zl 1€ aa If US R™ is an open set then the
function g: U—>CIn is called left (right) monogenic at a point z € U if
Dg(z) =0 (gD(z) = 0). The functions which are left (right) monogenic in the
whole space called left (right) entire monogenic functions.
Following Abul-Ez and Constales [4], we consider the class of monogenic
polynomials pp, of degree |m|, defined as

0 ((n—1/2))i (n+1)/2))j i 7N
Pr(2)= B2 PRV i () . (3)

i! j!

Let o, be n-dimensional surface area of n +1-dimensional unit ball and let
S " be n- dimensional sphere. Then, the class of monogenic polynomials
described in (3) satisfies (see [5], p. 1259)

i I Pm p1(2) dS;= K Sy .. 4

Also following Abul-Ez and De Almeida [5], we have
max || |[Pm (@Il =K1 " ... ()

2. Preliminaries

In this section we give some definition which will be used in the next
section
Definition (2.1).[5]: Let © be a connected open subset of R™"containing

the origin and let (z) be monogenic in Q. Then (z) is called special
monogenic in €, if and only if its Taylor’s series near zero has the form

9(2)=Zifn|=o pm(z)cm , Cm€ Cl, (6)

Definition(2.2),[5] : Let g(z)=X =0 Pm(z)cm be a special monogenic
function defined on a neighborhood of the closed ball B(0,r). Then,

lemll <= M(rg) r™ (@)

Where M(r,g)=max;=(llg(z)|| is the maximum modulus of g(z).
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Definition(2.3) [5]: Let g:R™'—Cl,, be a special monogenic function
whose Taylor’s series representation is given by (6). Then, for r > 0 the
maximum term of this special monogenic function is given by

u (0= p (r.9)=max|m>o{llam [[kmr™ } ... (8)

Also the index m with maximal length |m| for which maximum term is
achieved is called the central index and is denoted by:

v(r)=v(r, f)=m. ... (9

Definition (2.4).[5]: let g:R™—CI, be a special monogenic function
whose Taylor’s series representation is given by (6) Then, the order p and
lower order A of (z) are defined as :

1 loglogM(r,g)
p = lim,_ . sup T ... (10)
. . loglogM(r,
A=lim_ 1nfw
logr

Definition (2.5),[5]; Let:R™—ClI,, be a special monogenic function whose
Taylor’s series representation is given by (6) Then, the type o and lower
type of g are defined as :

logM(r1,8) (11)

o = lim,_ . sup ,
r

logM(r,g)

o =lim,_, inf -

The concept of generalized order and generalized type for entire
transcendental functions was given by Seremeta [6], Kapoor and Nautiyal
[3], Hence, let L° denote the class of functions h(x) satisfying the following
conditions:
(i) h(x) is defined on [a;0) and is positive, strictly increasing,
differentiable and tends to o as x — o0;
hi{1+—x]

w(x)
h(x)
—o00 as X — oo, The functions of the form f(x) =ax+b; 0 <a<ow; 0<b
< are inclass L°. Let a denote the class of functions h(x) satisfying

conditions (i) and

(ii) limy_, o =1, for every function v (x) such that w(x)

(i) limy e ——2 =
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For every ¢>0, that is h(x) is slowly increasing .The functions of the form
f(x)=log(ax), 0<a<oo ,are in class A . Let Q be the class of function h(x)
satisfying condition (i) and

(iv) there exist a function 6(x) € A and constants X, , K ; and K , such
that

d{h(}
0=k = 5t0gg) = K2

For all x>xo, The functions of the form f(x) = 6 (log x), d € A are in class A.
(see [3]). Let Q be the class of functions h(x) satisfying (i) and

(V) limy_., jg‘o(;; =K, 0<K<co. The functions of the form f(x) = log x + a
(log log x)* ; 0 < & <oo; 0<b<wo arein class Q. (See [3]) .

Kapoor and Nautiyal [3] showed that classes Q and Q are contained in a
and Q N Q = ¢. For an entire monogenic function g(z) and functions a(x)

either belongs to Q or Q0 , we define the generalized order p (o, g) of
g(z) and generalized type o=(a,p,g) as :

aflogM(r,g)] (12)

p (0,g)=lim,_, sup «(logD)

a[logM(r,g)]

o= (aapag): limr—>oo sup [a(logr)]p

3. Main Results
Now we prove
Theorem (3.1):

Let g:R"™—>Cl,, be a special monogenic function whose Taylor's series

representation is given by (6) if a(x) either belongs to Q or to Q , then the
generalized order p (a,g),(1<p(a,g)<ow) of g(z) is given as : -

a(Iml)

p(a,g)-1=lim | —oo SUp———— ...(13)
afloglicy[Imly
Proof: -
Write
0= lim|m|_,, sup—42D .. (14)

aflog|lm||™mT }

Now first we prove that p-1 >O. The coefficients of a monogenic Taylor's
series satisfy Cauchy's inequality, that is
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lemll <= M(rg) rm .. (15)
Also from (12) ,for arbitrary €0 and all r>1, (€) , we have
M(r,g)<exp[ o™ {p a(logr)}] ... (16)
Where p'=p+ €

Now from inequality (15) we have
lemll <= 7™ explor*{p allogn)}]
Since (\/%) <1 (see[5], pp.148) so the above inequality reducesto ..... (17)

lcmll < r7™ explo™{p a(logr)} ]
Or
llcmll < exp[-Im|logr +o {p a(logr)}] .. (18)

Since a(x) is an increasing function of x, we define r=r(|m|) as the unique
root of equation

o[

M] p a(logr) ... (19
For large values of |m|, we have

a(clm[) =o(|m|)
— a(c|m[) =a(|m[) {1+o(1)}

— a(c|m]) ~a(m|) {1+ y

a(lm)|
— a(c|m]) =a(|m[) +a( ¢)

Thus for large values of |[m| from equation (19) we have

pa(logr)=a(|m|) +a(logr)-a(p)

- (Im)l 1-a(p)
Or a(logr)= — { a(lml)}
Or a(logr)= Fl m) {1+0(1)}
~ ogtr L - _r
Or logr = a {r'>—1 a(|m|) }=F(|m| rary ) ...(20)
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using (19)and (20) in (18) we get

|m|

lcmll < exp [-ImIF+(5HF)

, -1 i 1
Or 555 log {llem [l }2 o™z a(Im] )}

a(|m|)

Or —1 S p'l

of E-loglllcmll )

; -1
a(lm)) afzlog {lley 1™} ]

Or —— <(p-1) x —
aflog {llcm [Im1}] aflog{licmll™}]

Since a (cX)=~a(x) as x—oo , proceeding to limit as |m| — oo we get
O <p-1

Since € >0 is arbitrarily small we finally get
0=<p-1 ... (21)

Now, we will prove that ©> p. If ©=00, then there is nothing to prove. So
let us assume that 0<©<wo, Therefore, for a given €>0 there exist ng € N
such that for all multi —indices m with |m|>n, ,we have

a(ml) —— <06+e=0
aflog {llcm lImM})

Or
llcmll <exp [-Im] o™ {a(|m[) /O}]

Now from the property of maximum modulus, we have
M(r,2)< Xz llcmll kmr™

Or M(1,9) < Xfmi=o km '™ exp[-|m| o™{ %)]

Now for r=max{l,exp(a'l(a(ng+1))/(n+1)}, we have

M(r,2)< A P+ X g, Km 1™ exp [-[m] o {a(Im)/O 3] ...(22)
Where A, is positive real constant.

We take N(r)=[ o™ {O a[log {(n+1)r}]}] where [x] denotes the integer
part of x>0.
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Since a(x) either belongs to Q or to Q ,the integer N(r) is well defined.
Now if r is sufficient large then from (22) we have

M(r,g)<A™+MNOx T2 L1 mi<nce) kmeXp[-Im|a™* {o(Im|/O}]

- |m|
+Tjmi>N Km exp[—Im| a™* {a(5)}] (23)
Now the first series in (22) can rewritten as
Y1 (Ximi=p Km) exp[-pa {a(p)/O] ...(24)

Now from ([2], lemma 1), we have

limp_,6 SUp(X Ky )P =n
Hence we have
limp_,co SUP[(Xm|=p Km) €XP [-pat{a(p)/O}1P=n limp_, o sup exp[-o Ya((p)/O}1=0

Hence the series (24) converges to a positive real constant A,.so from (23)
we get

M(r,2)<A; r"+A, N0+ 3 v Km 1™ expl -|m] o {o(|m|/O}]
Or  M(rg)<A; "+A; MO ¥ isnm km 1™ expl -Im| log{(n+1)r}]
Or M(r,g)<A1 I"+As 1" + Fnion e m(m)lm| . .(25)

The series in (25) can rewritten as

Zp 1(Z|m| =p m)( ) (26)

So we have

n+1

limpy.co SUp [ (Zjmi=p Km) ()" 1P =—=<

n+1

Hence the series (26) converges to a positive real constant Az.So from (25)
we get

M(r,g)< Ay r”O+A2 rN(r)+A3

Since N(r)— as r—o0 so we can write above inequality as
Log M(r,g ) < [1+o(1)]N(r)logr
Or Log M(r,g)<[1+o(1)][e” {Oaflog{(n+1)r}]} Jlogr
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< [1+o(D)][a{ O a[log{(n+1)r} 1} 1[0 {alog{(n+1)r}]]
< [1+o(D][ o™ {( O+1)aflog{(n+1)r}]}]

Or a[log M(r,2)]<(O+1)a[log(n+1)r}
a[logM(r,g)] ~ 1y [a[{1+0(1)}logr]
Or ao(logr) = ( O+1} o(logr)

Proceeding to limits as r—oo and using properties of a(x),we get
p<O+1
Since € >0 is arbitrarily small, we finally get
P-1<6 ...(27)
Combining (21) and (27) ,we get (13).hence theorem 1 is proved .

Next ,we prove the following

Theorem (3.2):

Let g:R™—ClIy, be a special monogenic function whose Taylor's

representation is given by (6) Also if a(x) either belongs to Q or to Q and
o<p<oo ,then the generalized type o=(a,p,g) of g(z) is given by

| a(Fh
o(0,p,g)-1=lim |y |- SUP ...(28)

-1
[“{,,_Ll log(llcpyl )mly]e-1

proof:

write 6=c(a.,p,g) and
| aZh
N =lim|pn|e SUP — ... (29)
(o2 Tog(lle [T 311

First we prove that n< o-1, the coefficients of special monogenic function
satisfy Cauchy's inequality,
that is
1 -
llemll <7 M(rg) r™ -++(30)

Also from (12) ,for arbitrary €>0 and all r>1, (€) we have

M(r,g) <exp([ o [c'(a(logr)}?) ... (31)

Where o'=c+€&
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Since (J%_m) <1 (see [5],pp.148) ...(32)
So from eq(31)and(32) then eq(30)reduces to
llemll <~ exp( o[ o'{a(logn)}"])
Or llemll < exp(-Im| logr + o[ o'{a(logr)}"]) ...(33)

Let r=r(Jm|) be unique root of the equation

| 1= (c"-1){a(logr)}® ...(34)

Im |logr

Then for all large values of |m|, we have

log r ~ o' [{ —— a(Im|)/p }"** 1=G(Im| /p , == . p-1) ... (35)

1

Using (34) and (35) in (33) we get

|m|
llemll < exp[-Im|G+(=5)G]

-1
> 2-10g {llcwll™ 32 a*H= allml/p )} )
Or a(lml|/p) <o-1
= <
[a{ﬁbg(llcmnm)}]pﬂ
Proceeding to limit as [m| —, we get
- a2
n :llm|m|—>00 Sup — S (5'-1

[“{,,_Ll log(llcy Il )ImT 311

since £>0 is arbitrarily small we finally get
n<(c-1) ... (36)

Now, we will proved that o-1<n. If n=co, then there is nothing to prove. So
let us assume that 0<n<oo, therefore, for all € >0 there exist ny € N such
that for all multi —indices m with |m|>n, ,we have

aZh ,
(o2 log(llem )T 1=

Or
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lemll < knexp(- 2= Im| o *[{;, a(lml /p)}"])

Now from the property of maximum modulus, we have
M(rg) < Zimi=o llemll ™
Or Mg Zimi=o Nlemlr™ +Eimin, 1km r'™exp( === |m| o
'~ a2}
Now for r>1,we have M(r,2)<Bir™ +¥mi=n,, 1 Km r'™exp(- = L Im| o
(ERICORS) 9
Where B; is a positive real constant .we take
N(m)=[p o’ {n(a *log {(n+1)r}] )-1]

Where [x] denotes the integer part of x>0. Since a(x) either belongs to Q or
to Q the integer N(r) is well defined. Now if r is sufficiently large, then from
(38) we have M(r,g)<By 1"+ "Ox B, K eXp(- 22 [m] o *[{

A S iy km TMexp(E Imlo ' [z oY) L (39)
Now the first series in (39) can be rewritten as:
Spe1 = kim) eXp(E=pa™ [ a(p/p)y ) --(40)
Now from ([2], Lemma 1), we have
limy_, o SUP (T jmj=p Km)*/P=n
Hence we have

limp-o SUP[(Bjmi=pkm ) exp (=== pa™ [ {=-a(p/p)} "] 1"

=nlimy_.c, sup exp(= = po? [{=-a(p/p)} "])=0
Hence the series (40) converges to a positive real constant B, .So from(39)
we get

1 O((lml)
T'll

_1 _
M(rg)= B 1 1% B ™ + 5o o 1™ exp(- 222 i 2 202D 310

Or
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M(1,g)<B 1 "+ B " + ¥ isne km 1™ lexp[—|m| log{(n + Dr}]

Or M(r,g)<B M+ B,rNO+y _ ky (=)™ ...(41)

n+1

The series in (41) can we rewritten as

51 mi=p ki) ()P ... (42)

n+1

So we have

] P =——<1

n+1

limp_,e0 SUP [Xjimi=p (Km) (n+1

Hence the series (42) converges to a positive real constant B; . Therefore
from (41), we get
M(I’,g)SBl r”0+82 rN(r)+Bg

Since N(r)—o as r—o0 so we can write above inequality as

Log M(r.g)<[1+0(1)IN(r) logr
<[1+o(D)]pa {n'(o[-=log{(n+1)r))"* }] logr
<[1+o(D]lpa (n'(af>5log{(+ 1)) Hx @ {(o[=E log{(n + Dr3])"™}
<[1+o()lpor™ {(n+1)(af-= log{(n+1)r}))""}

allog M(r@)1<(n* D= log(m+r})™ [L+o(1)]

aflogM(r,g)] \
or (a [ P 10g{(n+1)r} De- 1—(n+1)+[1+0(1)]

aflogm(r,g)] < (' D4o( 1
(Ot[ log{(n+1)r}])p Mm+DI (D]

«[logm(r,g)] aflogm(r,g)]
Or < H+1)[1+o(1
(O([ log{(n+1)r}])P (a[_log{(n+1)r}])p 1— (Tl )[ ( )]

aflogm(rg)] “lpglogl(m+ )P
allogr® = (allogrpp . (TDIFo(D)]

aflogm(r,g)] 0‘[0(1) log{(n+1)}]°
(a[ log{(n+1)r} ])p (aflogr P

(M*+D1+o(1)]

Proceeding to limits as r—o0 and using properties of a(x),we get
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c <n'+l
Since €0 is arbitrarily small ,we finally get
o-1<n ..(43)
Combining (36) and (43) ,we get (28).hence theorem 2 is proved .

4-Conclution

In the present paper we generalized order p (o, g ) and generalized type
o(a, g) the of slow growth of entire special monogenic function, and we
continue the work of Susheel Kumar [7] .
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