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Abstract  

    In the present paper we study the generalized order and generalized type 

of special monogenic functions having slow growth. The studied 

characterizations of generalized order and type of special monogenic 
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Keywords: Clifford algebra, Clifford analysis, special monogenic 

functions, generalized order and type. 

 

1- Introduction 

Firstly, following Constales, Almeida and Krausshar (see [1] and [2]), we 

give some definitions and associated properties .Let m= (m1,m2,…,mn) ∈  
N0

n  be the n-dimensional multi-index and x ∈ R
n
 then we define 

x
m

=x1
m1

…xn 
mn

 ,  m! =m1! …,mn! ,|m|  = m1+…+mn                …  (1) 

By {e1, e2,….,en} we denote the canonical basis of the Euclidean vector space 

R
n
. The associated real Clifford algebra CIn is free algebra generated by R

n
 

modulo x
2
=- ‖x‖ 2

e0 , where e0 is the neutral element with respect to 

multiplication of the Clifford algebra CIn .In the Clifford algebra CIn 

following multiplication rule holds : 

eiej+ejei=-2 δi,j  ,  i,j =1,2,…,n.  Where   δij is kronecker symbol. …  (2) 

A basis for Clifford algebra CIn is given by the set {e A :A⊆ {1,2,…,n)}, 

with  e A=el1
el2

…,elr
 . 

 Where 1≤ l1≤ l2…≤ lr≤n ,eϕ=e0=1.Each a ∈ CIn can be written in the form 

a=∑ aAA⊆(1,2,.,n) eA,  

With aA ∈ R.The conjugation in Clifford algebra CIn is defined by  

a=∑ aAA⊆(1,2,.,n)  eA  Where eA=elr
 elr−1

… .el1
,    and   ej=- ej   for j=1, 
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2…,n ,  e0=e0=1. The linear subspace span R{1,e1,e2,…,en} ⊆ CIn is the so 

called space of Para vectors z = x0 + x1 e1 + x2 e2 +……+xn en which we 

simply identify with R
n+1

:  Here x0=Sc(z) is scalar part and 

x=x1e1+x2e2+…+xnen=Vec(z) is vector part of Paravector z: The Clifford 

norm of an arbitrary a= ∑ aAeAA⊆ (1,2,..,n)  is given by ‖a‖ = 

(∑   |aA|2
A⊆(1,2,..,n) )1/2. The generalized Cauchy–Riemann operator in R

n+1
 

is given by D= 
∂

∂x0
+ ∑ ei

n
i=1  

∂

∂xi
 .  If U⊆ R

n+1
 is an open set then the 

function  g: U→CIn  is called left (right)  monogenic at a point z ∈ U if  

Dg(z) =0 (gD(z) = 0). The functions which are left (right) monogenic in the 

whole space called left (right) entire monogenic functions. 

Following Abul-Ez and Constales [4], we consider the class of monogenic 

polynomials pm of degree |m|, defined as 
 

                       …   (3 )           (z)
i
 (z)

j
   Pm(z)= ∑  

((n−1/2))i

i!

((n+1)/2))j   

j!

∞ 
i+j=|m|   

Let ωn be 𝑛-dimensional surface area of 𝑛 +1-dimensional unit ball and let 

𝑆 n
 be 𝑛- dimensional sphere. Then, the class of monogenic polynomials 

described in (3) satisfies (see [5], p. 1259) 
 

     
1

ωm
   ∫s

n
   pm pl(z) dSz= km δ|m||l|                             …  (4)           

Also following Abul-Ez and De Almeida [5], we have 

    max‖z‖=r  ‖Pm(z)‖ =km r 
m 

                                                       …  (5)   

2. Preliminaries 

In this section we give some definition which will be used in the next 

section                                                  

Definition (2.1),[5]: Let Ω be a connected open subset of R
n+1

containing 

the origin and let (𝑧) be monogenic in Ω. Then (𝑧) is called special 

monogenic in Ω, if and only if its Taylor’s series near zero has the form   

g(z)=∑  pm(z)cm
∞
|m|=0      ,   cm∈ CIn                                        …  (6) 

Definition(2.2),[5] : Let g(z)=∑   pm(z)cm
∞
|m|=0  be a special monogenic 

function defined on a neighborhood of the closed ball 𝐵(0,𝑟). Then, 

                                  ‖cm‖ ≤
1

√km
 M(r,g) r−m                       …  (7)                   

  Where M(r,g)=max‖z‖=r‖g(z)‖  is the maximum modulus of g(z). 
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Definition(2.3),[5]: Let g:R
n+1

→CI0n be a special monogenic function 

whose Taylor’s series representation is given by (6). Then, for 𝑟 > 0 the 

maximum term of this special monogenic function is given by  
                                                                                                            

  𝜇 (r)= 𝜇 (r,g)=max|m|≥0{‖am‖kmrm }                      …  (8)                        

Also the index m with maximal length |m| for which maximum term is 

achieved is called the central index and is denoted by:                                    

                            

           v(𝑟) = v (𝑟, 𝑓) = m.                                              … (9)   

 

Definition (2.4),[5]: let g:R
n+1

→CIn be a special monogenic function 

whose Taylor’s series representation is given by (6) Then, the order 𝜌 and 

lower order 𝜆 of (𝑧) are defined as : 

   ρ = limr→∞ sup
loglogM(r,g)

logr
                                        … (10) 

                     

    λ = limr→∞ inf
loglogM(r,g)

logr
      

Definition (2.5),[5]: Let:R
n+1

→CI0n be a special monogenic function whose 

Taylor’s series representation is given by (6) Then, the type σ and lower 

type  of g are defined as : 

                          σ = limr→∞ sup
logM(r,g)

rρ
                      … (11)     

                        ω = limr→∞ inf 
logM(r,g)

rρ
   

The concept of generalized order and generalized type for entire 

transcendental functions was given by Seremeta [6], Kapoor and Nautiyal 

[3], Hence, let L
0
 denote the class of functions h(x) satisfying the following 

conditions: 

(i)  h(x) is defined  on [a;∞) and is positive, strictly increasing, 

differentiable and tends to ∞ as x → ∞; 

(ii)   limx→∞

h[{1+
1

ᴪ(x)
}x]

h(x)
  =1, for every function ᴪ (x) such that ᴪ(x) 

→∞ as x → ∞.The functions of the form f(x) = ax + b; 0 < a < ∞; 0 < b 

< ∞ are in class L
0
.  Let  ᴧ denote the class of functions h(x) satisfying 

conditions (i) and 

(iii)   limx→∞
h(cx)

h(x)
= 1 
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For every c>0, that is h(x) is slowly increasing .The functions of the form 

f(x)=log(ax), 0<a<∞ ,are in class   ᴧ . Let Ω be the class of function h(x) 

satisfying condition (i) and 

(iv)  there exist a function δ(x) ∈ ᴧ and constants x0 , K 1 and K 2 such 

that 

                                      0 ≤ k1 ≤ 
d{h(x)}

d{δ(logx)}
  ≤ k2<∞, 

 

For all x>x0, The functions of the form f(x) = δ (log x), δ ∈ ᴧ are in class ᴧ. 

(see [3]).  Let Ω be the class of functions h(x) satisfying (i) and 

   (v)  limx→∞
d{h(x)}

d{logx}
 =K, 0<K<∞. The functions of the form f(x) = log x + a 

(log log x)
b
 ; 0 < a <∞;              0<b<∞  are in  class Ω . (See [3] ) .                

                                                                                                                  

Kapoor and Nautiyal [3] showed that classes Ω and Ω are contained in ᴧ 

and Ω ∩ Ω = ϕ. For an entire monogenic function g(z) and functions α(x) 

either belongs to Ω or Ω , we define  the  generalized order   ρ (α,  g ) of 

g(z) and generalized type σ=(α,ρ,g) as :                                                           

                                 

      ρ (α,g)=limr→∞ sup
α[logM(r,g)]

α(logr)
               … (12) 

    σ= (α,ρ,g)= limr→∞ sup
α[logM(r,g)]

[α(logr)]ρ
 

3. Main Results                                                                                               

Now we prove  

Theorem (3.1): 

Let g:R
n+1

→CI0n  be a special monogenic function whose Taylor's series 

representation is given by (6) if α(x) either belongs to Ω or to Ω , then the 

generalized order ρ (α,g),(1<ρ(α,g)<∞) of g(z) is given as : -                         

 

ρ(α,g)-1= lim|m| →∞ sup
α(|m|) 

α{log‖cm‖
−1
|m|}

                        …(13) 

Proof: -     

 Write 

       Ө= lim|m|→∞  sup
α(|m|)

α{log‖m‖
−1
|m| }

                      … (14)                

Now   first we prove that ρ-1 ≥Ө. The coefficients of a monogenic Taylor's 

series satisfy   Cauchy's inequality, that is    
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                 ‖cm‖  ≤
1

√km
 M(r,g)   r−|m|                                 …  (15)                 

                 from (12) ,for arbitrary Ɛ>0 and all r>r0 (Ɛ) ,  we have    Also 

          M(r,g)≤exp[ α
-1

{ṕ α(logr)}]                                       …    (16)                                                                                                                                                                                                                   

Where   ρ'=ρ+ Ɛ 

Now from inequality (15) we have  

     ‖cm‖ ≤ 
1

√km
   r−|m| exp[α

-1
{ṕ α(logr)}]                                                                       

Since (
1

√km
) ≤1     (see [5], pp.148) so the above inequality reduces to   …..  (17) 

                      ‖cm‖ ≤  r−|m|  exp[α
-1

{ṕ α(logr)}]  

Or 

               ‖cm‖ ≤ exp[-|m|logr +α 
-1

{ṕ α(logr)}]                          …    (18)   

Since α(x) is an increasing function of x, we define r=r(|m|) as the unique 

root of equation  

α [ 
|m  |logr

ṕ
 ] = ṕ α(logr)                                                             …    (19)    

 

For large values of |m|, we have  

                                                   α(c|m|) ≈α(|m|) 

                                              → α(c|m|) ≈α(|m|) {1+o(1)} 

                                              → α(c|m|) ≈α(|m|) {1+
α(c)

α(|m)|
 }  

                                              → α(c|m|) ≈α(|m|) +α( c)  

Thus for large values of |m| from equation (19) we have  

                                            ṕα(logr)≈α(|m|) +α(logr)-α(ṕ) 

Or                             α(logr)≈
α(|m)|

ṕ−1
  { 

1−α(ṕ)

α(|m|)
} 

Or                            α(logr)≈
α(|m)|

ṕ−1
  { 1+o(1)} 

Or                logr ≈ α
-1

{ 
1

ṕ−1 
 α(|m|) }=F(|m|  

1

ṕ−1  
  )    …(20)                     
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using (19)and (20) in (18) we get  

                                   ‖cm‖ ≤ exp [-|m|F+(
|m|

ṕ
)F]  

Or                           
ṕ

ṕ−1
 log {‖cm‖

−1

|m|  }≥ α
-1

{
1

ṕ−1
 α(|m| )} 

Or                          
α(|m|)

α{  
ṕ

ṕ−1 
log{‖cm‖  }

−1
|m| }

 ≤ ṕ-1 

Or                      
α(|m|)

α[log {‖cm‖
−1
|m|}]

   ≤ (ṕ-1) × 
α[

ṕ 

ṕ−1
log  {‖cm‖

−1
|m|} ]

α[log{‖cm‖
−1
|m|}]

  

Since α (cx)≈α(x) as x→∞ , proceeding to limit as |m| →  ∞ we get 

                                                 Ө ≤ ṕ-1   

 Since Ɛ >0 is arbitrarily small we finally get  

                                       Ө≤ρ-1                                      … (21) 

Now, we will prove that Ө≥ ρ. If Ө=∞, then there is nothing to prove. So 

let us assume that 0≤Ө≤∞, Therefore, for a given Ɛ>0 there exist  n0 ∈  N  

such that for all multi –indices m with  |m|>n0 ,we have  

                                      
α(|m|)    

α[log  {‖cm‖
−1
|m|}]

  ≤ Ө+Ɛ=Õ 

Or  

                                      ‖cm‖ ≤exp [-|m| α-1
{α(|m|) /Õ}] 

 

Now from the property of maximum modulus, we have  

                                 M(r,g)≤ ∑   ‖cm‖∞
|m|=0   km r|m| 

Or                             M(r,g) ≤ ∑   km  
∞
|m|=0 r|m| exp[-|m| α-1

{ 
|m|

Õ
)] 

Now    for   r = max{1,exp(α
-1

(
 α(n0 +1)

Õ
)/(n+1)}, we have 

  M(r,g)≤ A1 r
n0

+∑ km
∞
|m|=n0+1

   r|m| exp [ -|m| α-1
{α(|m|)/Õ }]  …(22)                                         

Where A1 is positive real constant. 

We take N(r)=[ α
-1

 {Õ α[log {(n+1)r}]}]   where [x] denotes the integer 

part of x≥0. 
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Since α(x) either belongs to Ω or to Ω ,the integer N(r) is well defined. 

Now if r is sufficient large then from (22) we have 

M(r,g)≤A1r
n0

+r
N(r)× ∑ km

∞
n0+1<|m|<N(r) exp[-|m|α-1

{α(|m|/Õ}]           

+∑ km exp [−|m||m|>N(r)  α−1{α(
|m|

Õ
 )}]                                         ….(23)                                                                                                       

Now the first series in (22) can rewritten as  

    ∑ (∑ km
∞
|m|=p

∞
p=1 ) exp[-pα

-1
{α(p)/Õ]                                          …(24)   

Now from ([2], lemma 1), we have  

                  limp→∞ sup (∑ km )
1

p =n 

Hence we have  

  limp→∞ sup [ (∑ km|m|=p ) exp [-pα
-1

{α(p)/Õ}]
1/p

=n limp→∞ sup exp[-α
-1

{α((p)/Õ}]=0 

Hence the series (24) converges to a positive real constant A2.so from (23) 

we get  

M(r,g)≤A1 r
n0

+A2 r
N(r)

+ ∑ km|m|>N(r)  r|m| exp[ -|m| α-1
{α(|m|/Õ}] 

Or      M(r,g)≤A1 r
n0

+A2 r
N(r)

 ∑ km|m|>N(r)  r|m| exp[ -|m| log{(n+1)r}] 

Or M(r,g)≤A1 r
n0

+A2 r
N(r)

 + ∑ km|m|>N(r) (
1

n+1
 )|m|                         . ..(25)                                                                 

The series in (25) can rewritten as  

    ∑ (∑ km
∞
|m|=p

∞
p=1 ) ( 

1

n+1  
) p                                                      … (26)                                                                                                     

So we have  

               limp→∞ sup [ (∑   km|m|=p ) (
1

n+1
)
 p

  ]
1/p 

=
n

 n+1
 <1 

 Hence the series (26) converges to a positive real constant A3.So from (25) 

we get  

             M(r,g)≤ A1 r
n
0+A2 r

N(r)
+A3 

 

Since N(r)→∞ as  r→∞ so we can write  above inequality as 

                    Log M(r,g ) ≤ [1+o(1)]N(r)logr   

  Or              Log M(r,g)≤[1+o(1)][α
-1

{Õα[log{(n+1)r}]}]logr  
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            ≤ [1+o(1)][α
-1

{ Õ α[log{(n+1)r}]}]×[α
-1

{α(log{(n+1)r}]] 

                            ≤ [1+o(1)][ α
-1

{( Õ+1)α[log{(n+1)r}]}]    

  Or                       α[log M(r,g)]≤(Õ+1)α[log(n+1)r} 

 Or                      
α[log M(r,g)]

α(logr)
  ≤ ( Õ+1)

 [ α[{1+o(1)}logr]

α(logr)
  

   Proceeding to limits as  r→∞ and using properties of α(x),we get 

                                          ρ≤Õ+1  

  Since Ɛ >0 is arbitrarily small, we finally get 

                                           Ρ-1≤Ө                                          …(27)                              

 Combining (21) and (27) ,we get (13).hence theorem 1 is proved . 

Next ,we prove the following    
 

Theorem (3.2):              

Let  g:R
n+1

→CI0n  be a special monogenic function whose Taylor's 

representation is given by (6) Also if α(x) either belongs to Ω or to Ω  and  

o<ρ<∞ ,then  the generalized type σ=(α,ρ,g) of g(z) is given by  

 σ(α,ρ,g)-1=lim|m|→∞ sup 
α(

|m|

ρ
)

[α{
ρ

ρ−1 
 log (‖cm‖ )

−1
|m|}]ρ−1

                           …(28 ) 

proof: 

write σ=σ(α,ρ,g) and 

      η =lim|m|→∞ sup 
α(

|m|

ρ
)

[α{
ρ

ρ−1 
 log (‖cm‖ )

−1
|m| }]ρ−1

                                   … (29) 

First we prove that η≤ σ-1, the coefficients of special monogenic function 

satisfy Cauchy's inequality,  

    that is                                     

         ‖cm‖  ≤
1

√km
 M(r,g)  r−|m|                                                    …(30)  

 Also from (12) ,for arbitrary Ɛ>0 and all r>r0 (Ɛ) we have                   

                                  

            M(r,g) ≤exp([ α
-1

[σ'(α(logr)}
ρ
)                                        … (31)                                            

             Where σ'=σ+Ɛ     
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           Since (
1

√km
) ≤1     (see [5],pp.148)                                     …(32)  

So from eq(31)and(32) then eq(30)reduces to  

                  ‖cm‖ ≤r−|m| exp( α
-1

[ σ'{α(logr)}
ρ
])          

Or              ‖cm‖ ≤ exp(-|m| logr + α
-1

[ σ'{α(logr)}
ρ
])                …(33) 

 Let r=r(|m|) be unique root of the equation  

             α [ 
|m  |logr

ρ
 ] = (σ'-1 ){α(logr)}

ρ
                                        …(34) 

Then for all large values of |m|, we have  

  log r ≈ α
-1

[{ 
1

σ′−1 
 α(|m|)/ρ }

1/ρ-1
 ]=G(|m| /ρ   ,  

1

σ′−1
   ,  ρ-1)     … (35) 

Using (34) and (35) in (33) we get  

                            ‖cm‖ ≤ exp[-|m|G+(
|m|

ρ
)G] 

Or                    
ρ

ρ−1
 log {‖cm‖

−1

|m|  } ≥ α
-1

[{
1

σ′−1
 α(|m|/ρ )}

1/ρ-1
] 

Or                    
α(|m|/ρ)

[α{
ρ

ρ−1
 log (‖cm‖

−1
|m|)} ]ρ−1

  ≤ σ'-1   

Proceeding to limit as |m| →∞, we  get  

             η =lim|m|→∞ sup 
α(

|m|

ρ
)

[α{
ρ

ρ−1 
 log (‖cm‖ )

−1
|m| }]ρ−1

    ≤  σ'-1 

 

since Ɛ>0 is arbitrarily small we finally get  

                        η≤(σ-1)                                                             … (36)                    

Now, we will proved that σ-1≤η. If η=∞, then there is nothing to prove. So 

let us assume that 0≤η≤∞, therefore, for all Ɛ >0 there exist  n0 ∈  N such 

that for all multi –indices m with  |m|>n0 ,we have  

             0  ≤ 
α(

|m|

ρ
)

[α{
ρ

ρ−1 
 log (‖cm‖ )

−1
|m|  }]ρ−1

   ≤ η+Ɛ=η'                              …(37) 

Or    
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              ‖cm‖ ≤ kmexp(- 
 ρ−1

ρ
 |m| α-1

[{
1

η′
 α(|m| /ρ)}

1/ρ-1
]) 

 

Now from the property of maximum modulus, we have   

               M(r,g)   ≤  ∑   ‖cm‖∞
|m|=0   r|m| 

Or      M(r,g)≤  ∑   ∞
|m|=0 ‖cm‖r|m|  +∑ km|m|=n0+ 1  r|m| exp( −

ρ−1

η′
|m|α

-

1
[{  

1

η′
  α(

|m|

ρ
 ) }

1/ρ-1
]) 

Now for r>1,we have  M(r,g)≤B1r
n0

 +∑   km|m|=n0+ 1
 r|m|exp(- 

ρ−1

ρ
 |m| α-1

       

[{  
1

η′
    α(

|m|

ρ
)

1/ρ-1
])                                                 …(38) 

Where B1 is a positive real constant .we take  

           N(r)=[ρ α
-1

 {η'( α[
ρ

ρ−1
 log {(n+1)r}] )

ρ
-1 ]  

  Where [x] denotes the integer part of x≥0. Since α(x) either belongs to Ω or 

to Ω the integer N(r) is well defined. Now if r is sufficiently large, then from 

(38) we have  M(r,g)≤B1 r
n0

+ r
N(r)× ∑ kmn0+1<N(r)

 exp(- 
  ρ−1

ρ
 |m| α-1

[{ 
1

η′
 

α(
|m|

ρ
)}

1/ρ-1
]]+∑  km r

|m|
|m|>N(r) exp(-

ρ−1

ρ
|m|α-1

[{
1

η′
 α(

|m|

ρ
)}

1/ρ-
 
1
})     … (39)  

Now the first series in (39) can be rewritten as:  

        ∑ (∑ km
∞
|m|=p

∞
p=1 ) exp(-

ρ−1

ρ
pα−1 [{

1

η′ 
α(p/ρ)}

 
])

 1/ρ-1
                    …(40)                                                              

Now from ([2], Lemma 1), we have 

            limp→∞ sup (∑ km|m|=p )1/p=n 

Hence we have  

     limp→∞ sup [(∑ km )  exp|m|=p  (−
ρ−1

ρ
ρα−1 [ {

1

η′ 
α(p/ρ)}

1/ρ-1
] ]

1/ρ
  

    =nlimp→∞ sup exp (−
ρ−1

ρ
 pα−1 [{

1

η′ 
α(p/ρ)}

1/ρ-1
])=0   

Hence the series (40) converges to a positive real constant B2 .So from(39) 

we get 

M(r,g)≤ B 1  r
n0

+ B 2 r
 N(r)

 + ∑ km|m|>N(r) r|m|exp(- 
ρ−1

ρ
 |m|α-1

[{  
1

η′
 
α(|m|)

ρ
 }

1/ρ-1
]) 

Or 
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  M(r,g)≤ B 1  r
n0

+ B 2 r
 N(r)

 + ∑ km|m|>N(r)  r|m |exp [−|m| log{(n + 1)r}] 

Or             M(r,g)≤ B 1  r
n0

+ B 2 r
 N(r)

 + ∑ km|m|=1  (
1

n+1
)|m|             …(41) 

The series in (41) can we rewritten as  

           ∑ (∑ km|m|=p
∞
p=1 )( 

1

n+1
)p                                                      … (42) 

So we have  

              limp→∞ sup [∑  (∞
|m|=p km) (

1

n+1
)ρ

]  
1/p  

= 
n

 n+1
 <1 

Hence the series (42) converges to a positive real constant B3 . Therefore 

from (41), we get  

           M(r,g)≤B1 r
n0

+B2 r
N(r)

+B3 

Since N(r)→∞ as  r→∞ so we can write  above inequality as 

      Log M(r,g)≤[1+o(1)]N(r) logr 

        ≤[1+o(1)][ρα
-1

{η'(α[
ρ

ρ−1
log{(n+1)r])

ρ-1 
}] logr 

≤[1+o(1)][ρα
-1

{η'(α[
ρ

ρ−1
log{(n+1)r])

ρ-1 
}]× α

-1
{(α[

ρ

ρ−1 
 log {(n + 1)r}])ρ-1

} 

≤[1+o(1)]ρα
-1

{(η'+1)(α[
ρ

ρ−1
 log{(n+1)r}])

ρ-1
} 

α[log M(r,g)]≤(η'+1)α([
ρ

ρ−1
log(n+1)r}])

ρ-1
 [1+o(1)] 

   Or         
α[log M(r,g)]

(α[
ρ

ρ−1  
log{(n+1)r}])ρ−1

 ≤(η'+1)+[1+o(1)] 

 

              
α[log m(r,g)]

(α[ 
ρ

ρ−1
log{(n+1)r} ])ρ

 ≤ (η'+1)[1+o(1)]  

   Or             
α[log m(r,g)]

(α[ 
ρ

ρ−1
log{(n+1)r} ])ρ

 ≤ 
α[log m(r,g)]

(α[ 
ρ

ρ−1
log{(n+1)r} ])ρ−1

 ≤ (η'+1)[1+o(1)] 

     
α[log m(r,g)]

(α[ log r ])ρ
 ≤

α[
ρ

ρ−1
log{(n+1)}]ρ

(α[ log r  ])ρ
  (η'+1)[1+o(1)] 

      
α[log m(r,g)]

(α[ 
ρ

ρ−1
log{(n+1)r} ])ρ

 ≤
α[o(1) log{(n+1)}]ρ

(α[ log r  ])ρ
  (η'+1)[1+o(1)]  

     Proceeding to limits as  r→∞ and using properties of α(x),we get  
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                                             σ  ≤η'+1            

      Since Ɛ>0 is arbitrarily small ,we finally get  

                                          σ-1≤ η                                        ...(43)                                     

     Combining (36) and (43) ,we get (28).hence theorem 2  is proved . 

 

4-Conclution  

In the present paper we generalized order ρ (α , g ) and generalized type 

σ(α, g) the of slow growth of entire special monogenic function, and we 

continue the work of  Susheel Kumar [7] . 
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لدوال تحليليه ممثله بواسطة  عن الرتبة والنوع  
أحاديه المنشأ دوال خاصة  

 

ألشبانيمشتاق شاكر                 السادةم.أسيل حميد عبد   . د   ا.م 

 كلية التربية الأساسية /قسم الرياضيات                           كلية العلوم /قسم الرياضيات     

 الجامعة المستنصرية                                     الجامعة المستنصرية            

 

 -:الخلاصة

النوع لدوال الخاصة أحادية المنشأ ذات النمو  وأعمامفي المقالة المعروضة درسنا أعمام الرتبة  
 تم الحصول عليه بدلالة معاملات سلسلة تايلور., والوصف لأعمام الرتبة وأعمام النوع قد  البطيء


