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 الملخص

لقيم الذاتية الموسعة الثنائية و المتجهات الذاتية الموسعة الثائية.  تركز هذاالبحث حول مفاهيم ا
مؤثر متشابه او شبه متشابة حيث   λB و  Aالمعطاه بحيث أن  λسوف نتحرى حول العدد المعقد 

A, B   مؤثران مقيدان معرفة على فضاء هيلبرتℋ. 
 

Abstract 

     This paper focuses on the concepts of bi-extended eigenvalues and bi-

extended eigenvectors. It investigates the complex number λ that makes A 

and λB Similar or Quasi-Similar operators where A, B are bounded linear 

operators defined on Hilbert space ℋ. 

Keywords: bi-extended eigenvalue, bi-extended eigenvector, Similar 

operator, Quasi-Similar operator. 

 

1. Introduction and terminology  

   Let ℋ be a separable complex Hilbert space and ℬ(ℋ) the algebra of all 

bounded linear operators on ℋ. For any operator A in ℬ(ℋ), the spectrum 

of A are denoted by 𝜎(𝐴). The adjoint of 𝑇 ∈ ℬ(ℋ) is denoted by 𝑇∗. A 

complex number λ is called an extended eigenvalue of A ∈ ℬ(ℋ) if there 

exists a non-zero operator X ∈ ℬ(ℋ) satisfying the equation AX = λXA. 

Such an operator X is called extended eigenvector corresponding to λ, for 

more details see [1,2,3]. The set of all extended eigenvalues of A is denoted 

by E(A), and the set of all extended eigenvectors of A corresponding to λ is 

denoted by Eλ(A). It is clear that E1(A) hold and equal to {A}′, such that 

{A}′is the commutate of A. Now we define the complex number 𝜆 is bi-
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extended eigenvalue for the operators 𝐴, 𝐵 ∈ ℬ(ℋ), if there exists a 

nonzero operator 𝑋 ∈ ℬ(ℋ) such that 𝐴𝑋 = 𝜆𝑋𝐵. 

     The set of all bi-extended eigenvalues denote by 𝐸(𝐴, 𝐵), the operator 𝑋 

is said to be bi-extended eigenvector; while the set of all bi-extended 

eigenvectors denote by 𝐸𝜆(𝐴, 𝐵). It is noteworthy that if A and B are two 

bounded linear operators on a Hilbert space ℋ, then A is similar to B if 

there exists invertible operator T ∈ ℬ(ℋ), such that AT = TB. These 

operators are denoted by A~B. If ℋ1 and ℋ2 are Hilbert spaces and  

A ∈ ℬ(ℋ1) and B ∈ ℬ(ℋ2), then A is Quasi-Similar to B if there exist two 

injective with dense range bounded operators T1 from ℋ1 to ℋ2 and T2 

from  ℋ2 to ℋ1, such that  T1A = BT1 and  AT2 = T2B. This is denoted by 

A ≈ B [6]. Now we define the set S(A, B) of all complex number λ, such 

that the operator A is similar to the operator λB, that is S(A, B) =

{λ ∈ ℂ:  A~λB }, if λ ∈ S(A, B). Then Sλ(A, B) refers to the set of all 

invertible operators X, such that  AX = λXB. Also, the set QS(A, B) of all 

complex number λ is define, such that the operator A is Quasi-Similar to 

the operator λB. Therefore, QS(A, B) = {λ ∈ ℂ:  A ≈ λB } if λ ∈ QS(A, B). 

Then, QSλ(A, B) refers to the set all injective and dense range operators 𝑋, 

such that AX = X(λB). This study will always assume that A, B are non-

zero operators. This paper examines the sets S(A, B) and QS(A, B), the 

relations between these sets and the set E(A, B); as well as giving some 

properties and important results. 

2. Concepts of the bi-extended eigenvalues and bi-extended 

eigenvectors. 

   This section defines the concepts of the bi-extended eigenvalues and bi-

extended eigenvectors. 

Definition (2.1): We say that the complex number 𝜆 is bi-extended 

eigenvalue for the operators 𝐴 and 𝐵 ∈ ℬ(ℋ), if there exists a nonzero 

operator 𝑋 ∈ ℬ(ℋ), such that 

 𝐴𝑋 = 𝜆𝑋𝐵                                                                       (1) 

    The set of all bi-extended eigenvalues is denoted by 𝐸(𝐴, 𝐵), the 

operator 𝑋 is said to be bi-extended eigenvector; while the set of all bi 

extended eigenvectors is denoted by 𝐸𝜆(𝐴, 𝐵), that is, 

𝐸(𝐴, 𝐵) = {𝜆 ∈ ℂ: there exists a nonzero operator 𝑋 satisfying 𝐴𝑋 = 𝜆𝑋𝐵} 

𝐸𝜆(𝐴, 𝐵) = {𝑋 ∈ ℬ(ℋ): 𝑋 ≠ 0 and 𝐴𝑋 = 𝜆𝑋𝐵} 
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Proposition (2.2) : Let 𝐴 and 𝐵 ∈ ℬ(ℋ). Then, 𝐸̃𝜆(𝐴, 𝐵) = 𝐸𝜆(𝐴, 𝐵)⋃{0} 

is closed linear subspace of  ℬ(ℋ). 

Proof: First, we can prove that 𝐸̃𝜆(𝐴, 𝐵) is linear subspace of ℬ(ℋ). 

Suppose that 𝑇1, 𝑇2 ∈ 𝐸̃𝜆(𝐴, 𝐵), and 𝛼, 𝛽 ∈ ℂ, then 𝐴𝑇1 = 𝜆𝑇1𝐵 and 

𝐴𝑇2 = 𝜆𝑇2𝐵. Hence, 𝐴(𝛼𝑇1 + 𝛽𝑇2) = (𝛼𝐴𝑇1 + 𝛽𝐴𝑇2) = (𝛼𝜆𝑇1𝐵 +

𝛽𝜆𝑇2𝐵) = 𝜆(𝛼𝑇1 + 𝛽𝑇2)𝐵. Therefore, 𝛼𝑇1 + 𝛽𝑇2 ∈ 𝐸̃𝜆(𝐴, 𝐵). Now, it 

shall be assume that 𝑇𝑛 ∈ 𝐸̃𝜆(𝐴, 𝐵) for each positive integer number 𝑛, 

such that 𝑇𝑛 → 𝑇. Then 𝐴𝑇𝑛 → 𝐴𝑇 and 𝜆𝑇𝑛𝐵 → 𝜆𝑇𝐵, since 𝐴𝑇𝑛 = 𝜆𝑇𝑛𝐵 

for every 𝑛, then 𝐴𝑇 = 𝜆𝑇𝐵. Thus 𝑇 ∈ 𝐸̃𝜆(𝐴, 𝐵). Then, 𝐸̃𝜆(𝐴, 𝐵) is closed 

linear subspace of ℬ(ℋ). ∎ 

Theorem (2.3) [2]: If 𝐴 and 𝐵 are two operators on Hilbert space ℋ, such 

that 𝜎(𝐴) ∩ 𝜎(𝐵) = 𝜙, then 𝑋 = 0 is the only solution to the operator 

equation 𝐴𝑋 − 𝑋𝐵 = 0. 

Proposition (2.4): For any two operators, 𝐴, 𝐵 ∈ ℬ(ℋ), there is  

E(𝐴, 𝐵) ⊂ {𝜆 ∈ ℂ ∶  𝜎(𝐴)⋂𝜎(𝜆𝐵) ≠ 𝜙}. 

Proof: Suppose that 𝜆 ∈ E(𝐴, 𝐵). Then, there exists a nonzero operator 

𝑋 ∈ ℬ(ℋ), such that 𝐴𝑋 = 𝜆𝑋𝐵. Therefore 𝜎(𝐴)⋂𝜎(𝜆𝐵) ≠ 𝜙,by theorem 

(2.3). Hence, 𝜆 ∈ {𝜆 ∈ ℂ ∶ 𝜎(𝐴)⋂𝜎(𝜆𝐵) ≠ 𝜙}. Thus  E(𝐴, 𝐵) ⊂ {𝜆 ∈ ℂ ∶

 𝜎(𝐴)⋂𝜎(𝜆𝐵) ≠ 𝜙}.∎ 

Example (2.5): If 𝑈 is Unilateral shift operator and 𝑇 has dense range, then 

the only solution of  𝑈𝑋 = λ𝑋𝑇 is 𝑋 = 0. 

Solution: It is clear that if λ = 0, then 𝑈𝑋 = 0 solution 𝐵𝑈𝑋 = 0, thus 

𝑋 = 0. So, assume that λ ≠ 0 and 𝑈𝑋 = λ𝑋𝑇. Then 𝑋∗𝑈∗ = λ̅𝑇∗𝑋∗. Let 

{𝑒𝑛}𝑛=0
∞  be the usual orthonormal basis. Hence, 𝑈𝑒𝑖 = 𝑒𝑖+1 and 𝑈∗𝑒𝑖+1 =

𝑒𝑖 for every 𝑖 = 1, 2, … , 𝑈∗𝑒1 = 0. Now, since 𝑇 has dense range, then 𝑇∗is 

injective. So, 𝑋∗𝑈∗(𝑒0) = λ̅𝑇∗𝑋∗(𝑒0), yields 0 = λ̅𝑇∗𝑋∗(𝑒0), since λ ≠ 0 

and 𝑇∗is injective, then 𝑋∗(𝑒0) = 0 and 𝑋∗𝑈∗(𝑒1) = λ̅𝑇∗𝑋∗(𝑒1), so that 

𝑋∗(𝑒0) = λ̅𝑇∗𝑋∗(𝑒1). Therefore, 𝑋∗(𝑒1) = 0. By employing a similar 

manner and using the mathematical induction, there is 𝑋∗(𝑒𝑛) =

0, for each 𝑛. Then, 𝑋 = 0. ∎ 

Proposition (2.6): Suppose that 𝐴 and 𝐵 are two operators on finite 

dimensional space ℋ: 

1- If 𝐴 and 𝐵 are not invertible, then E(𝐴, 𝐵) = {𝜆 ∈ ℂ: 𝜎(𝐴)⋂𝜎(𝜆𝐵) ≠ 𝜙} = ℂ. 

2- If 𝐴 and 𝐵 are invertible, then E(𝐴, 𝐵) = {𝜆 ∈ ℂ: 𝜎(𝐴)⋂𝜎(𝜆𝐵) ≠ 𝜙}. 
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Proof: The case when 𝐴 and 𝐵 are not invertible is considered firstly. In 

this case, both 𝐴 and 𝐵∗ have non-trivial kernels. Let 𝑋́: Ker(𝐵∗) ⟶

Ker(𝐴) be a nonzero operator. Define 𝑋 = 𝑋́𝒫, where 𝒫 denotes the 

orthogonal projection on kernel of 𝐵∗. Clearly, 𝑋 ≠ 0. Note further that 

𝐴𝑋 = 0, since for every 𝑓 ∈ ℋ, there is 𝐴(𝑋́𝒫(𝑓)) = 0. By defining 𝑋́, 

there is 𝑋́𝒫(𝑓) ∈ Ker(𝐴) for each 𝑓 ∈ ℋ, there is 𝐴𝑋 = 0 and 𝑋𝐵 = 0. In 

other words, 𝑋́𝒫(𝐵(𝑓)) = 0, since 𝑋́𝒫(𝐵(𝑓)) for each 𝑓 ∈ ℋ. 

𝐵(𝑓) ∈ 𝑅𝑎𝑛𝑔(𝐵) = (Ker (𝐵∗))⊥. Then, 𝐵(𝑓) ∈ (Ker (𝐵∗))⊥, but  

𝓟(𝑩(𝒇)) = {
𝟎    𝐢𝐟 𝑩(𝒇) ∉ 𝐊𝐞𝐫 (𝑩∗)

𝑩(𝒇)  𝐢𝐟 𝑩(𝒇) ∈ 𝐊𝐞𝐫 (𝑩∗)
}                                                             (2) 

If 𝐵(𝑓) ∉ Ker(𝐵∗), then 𝒫(𝐵(𝑓)) = 0 is hold. If 𝐵(𝑓) ∈ Ker(𝐵∗); 

therefore, 𝐵(𝑓) ∈ Ker(𝐵∗) ∩ (Ker(𝐵∗))⊥ = {0}. Then, 𝒫(𝐵(𝑓)) = 0. 

Since 𝑋́ is a nonzero linear operator, then 𝑋́(0) = 0; thus, 𝑋𝐵 = 0. Hence, 

𝐴𝑋 = 𝜆𝑋𝐵 for any 𝜆 ∈ ℂ. Consequently, E(𝐴, 𝐵) = ℂ. Since 𝐴 and 𝐵 are 

not invertible for any complex number 𝜆, 0 ∈ 𝜎(𝐴)⋂𝜎(𝜆𝐵), thus {𝜆 ∈

ℂ: 𝜎(𝐴)⋂𝜎(𝜆𝐵) ≠ 𝜙} = ℂ.  

Secondly, the study considers the case when 𝐴 and 𝐵 are invertible so that 

0 ∉ 𝜎(𝐴)⋂𝜎(𝜆𝐵). To show that {𝜆 ∈ ℂ: 𝜎(𝐴)⋂𝜎(𝜆𝐵) ≠ 0} ⊆ E(𝐴, 𝐵), 

then suppose that 𝛽 is a (necessarily non-zero) complex number such that 

𝛽 ∈ 𝜎(𝐴) and 𝛽 ∈ 𝜎(𝜆𝐵). Since 𝛽 ∈ 𝜎(𝐴), then there exists a vector 𝑢 

such that 𝐴𝑢 = 𝛽𝑢. On the other hand, 𝛽 ∈ 𝜎(𝜆𝐵) which implies that 

𝜆 ≠ 0; so, 
𝛽

𝜆
⁄ ∈ 𝜎(𝐵) and (

𝛽
𝜆

⁄ )
̅̅ ̅̅ ̅̅ ̅

∈ 𝜎(𝐵∗) as well as there is a vector 𝑣 

such that 𝐵∗𝑣 = (
𝛽

𝜆
⁄ )

̅̅ ̅̅ ̅̅ ̅
𝑣. Let 𝑋 = 𝑢⨂𝑣, then 𝐴𝑋 = 𝜆𝑋𝐵. So, for every 

𝑓 ∈ ℋ. Then, 𝐴𝑋𝑓 = 𝐴(𝑢⨂𝑣)𝑓 = (𝐴(𝑓, 𝑣)𝑢) = (𝑓, 𝑣)𝐴𝑢 = 𝛽(𝑓, 𝑣)𝑢 and 

𝜆𝑋𝐵𝑓 = 𝜆((𝑢⨂𝑣)𝐵)(𝑓)) = 𝜆(𝐵(𝑓), 𝑣)𝑢 = 𝜆(𝑓, 𝐵∗𝑣)𝑢 =

𝜆(𝑓, (
𝛽

𝜆
⁄ )

̅̅ ̅̅ ̅̅ ̅̅
𝑣)𝑢 = 𝛽(𝑓, 𝑣)𝑢; consequently, 𝛽 ∈ E(𝐴, 𝐵). ∎ 

The Similar and Quasi-Similar on E(𝐴, 𝐵) will be define using the same 

way of E(𝐴, 𝐵). 

Definition (2.7): Suppose that 𝐴, 𝐵 ∈ ℬ(ℋ), then:  

𝑆(𝐴, 𝐵) = {𝜆 ∈ ℂ: 𝐴 𝑖𝑠 Similar to 𝜆𝐵}. 

𝑄𝑆(𝐴, 𝐵) = {𝜆 ∈ ℂ: 𝐴 is Quasisimilar to 𝜆𝐵}. 
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One can prove easily the following remark: 

Remark (2.8): Suppose that A and B are nonzero operators in ℬ(ℋ). 

Then: 

1- 𝑆(0,0) = ℂ, 𝑆(𝐴, 0) = ∅ and 𝑆(0, 𝐵) = {0}. 

2- 𝑆(𝛼𝐼, 𝐼) = {𝛼}; also if 𝛼 ≠ 0, then 𝑆(𝐼, 𝛼𝐼) = {1
𝛼⁄ }, where I is the identity 

operator. 

3- 𝑆(𝛼𝐴, 𝐵) = 𝑆(𝐴, 1
𝛼⁄ 𝐵) for every nonzero complex number 𝛼. 

4- 𝑆(𝐴, 𝐵) ⊆ 𝑄𝑆(𝐴, 𝐵) ⊆ 𝐸(𝐴, 𝐵). 

Proof: (1) It is clarified in definition (2.7).  

(2) There is 𝑆(𝛼𝐼, 𝐼) = {𝜆 ∈ ℂ: 𝛼𝐼 𝑖𝑠 Similar to 𝜆𝐼} = {𝛼}. By the same 

way, it has been proved that 𝑆(𝐼, 𝛼𝐼) = {1
𝛼⁄ }, where 𝛼 ≠ 0.  

(3) Using the same definition, 𝑆(𝛼𝐴, 𝐵) = 𝑆(𝐴, 1
𝛼⁄ 𝐵) for every nonzero 

complex number 𝛼.  

(4) Using the same way in [7], and since every invertible is injective, this is 

also nonzero; we have 𝑆(𝐴, 𝐵) ⊆ 𝑄𝑆(𝐴, 𝐵) ⊆ 𝐸(𝐴, 𝐵). ∎ 

Based on Remark (2.8), 𝑆(𝐴, 𝐵) is not necessary equal to 𝑆(𝐵, 𝐴). 

Theorem (2.9): Suppose that  𝐴 and 𝐵 are two bounded operators such that 

𝐴 or 𝐴∗ is injective and λ𝑛 = 1 for some positive integer number 𝑛, λ ≠ 1. 

If 𝐴𝑋 = 𝜆𝑋𝐵 (Brief 𝑋 ∈ Ẽλ(𝐴, 𝐵)), then the operators 

𝑌𝑖 = ∑ λij

𝑛−1

𝑗=0

𝐴𝑛−𝑗−1𝑋𝐵𝑗, 𝑖 = 0,1, … , 𝑛 − 1 

are the unique operators that satisfy 𝐴𝑌𝑖 = λi𝑌𝑖𝐴, 𝑖 = 1, 2, … , 𝑛 − 1. 

Proof: Suppose that 𝐴 or 𝐴∗ is injective and λn = 1 for some positive 

integer number 𝑛, λ ≠ 1. So if 𝑋 ∈ Ẽλ(𝐴, 𝐵), then  𝐴𝑋 = λ𝑋𝐵. So, 

𝐴𝑛𝑋 = λn𝑋𝐵𝑛 and  𝐴𝑛𝑋 = 𝑋𝐵𝑛. Let  𝑌𝑖 = ∑ λij𝑛−1
𝑗=0 𝐴𝑛−𝑗−1𝑋𝐵𝑗, 

then 𝐴𝑌𝑖 = ∑ λij𝑛−1
𝑗=0 𝐴𝑛−𝑗𝑋𝐵𝑗 = 𝐴𝑛𝑋 + ∑ λij𝑛−1

𝑗=1 𝐴𝑛−𝑗𝑋𝐵𝑗 

 = 𝑋𝐵𝑛 + ∑ λij

𝑛−1

𝑗=1

𝐴𝑛−𝑗𝑋𝐵𝑗 = ∑ λi(k+1)

𝑛−1

𝑘=0

𝐴𝑛−𝑘−1𝑋𝐵𝑘+1 = (∑ λik

𝑛−1

𝑘=0

𝐴𝑛−𝑘−1𝑋𝐵𝑘) (λi𝐵) = λi𝑌𝑖𝐵 

Since λn = 1, λ ≠ 1. Then 1 − λ𝑛 = 0.  So, (1 − λ)(1 + λ + ⋯ + λn−1) =

0. Generally ∑ λij𝑛−1
𝑖=0 = 0, when 𝑗 ≠ 0 and the sum is 𝑛 when 𝑗 = 0. 
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∑ Yi

𝑛−1

𝑖=0

= ∑ ∑ λij

𝑛−1

𝑗=0

𝐴𝑛−𝑗−1𝑋𝐵𝑗

𝑛−1

𝑖=0

= ∑ 𝐴𝑛−𝑗−1𝑋𝐵𝑗

𝑛−1

𝑗=0

∑ λij

𝑛−1

𝑖=0

= 𝑛𝐴𝑛−1𝑋 

  Now, suppose that  𝑍0, 𝑍1, … , 𝑍𝑛−1 are operators such that 𝑛𝐴𝑛−1𝑋 =

∑ Z𝑖
𝑛−1
𝑖=0  and 𝐴𝑍𝑖 = λi𝑍𝑖𝐵, for each 𝑖, there is 

𝑛𝐴𝑛−1Yi = ∑ λij𝑛−1
𝑗=0 𝐴𝑛−𝑗−1(𝑛𝐴𝑛−1𝑋)𝐵𝑗 = ∑ λij𝑛−1

𝑗=0 𝐴𝑛−𝑗−1(∑ Z𝑘
𝑛−1
𝑘=0 )𝐵𝑗 

= ∑ ∑ λij𝑛−1
𝑘=0 𝐴𝑛−𝑗−1𝐵𝑗λ−ki𝑛−1

𝑗=0 Z𝑘, when  𝐵 = 𝐴, then  𝑛𝐴𝑛−1Yi =

𝑛𝐴𝑛−1Z𝑖 . 

If A is injective, then 𝐴𝑛−1Yi = 𝐴𝑛−1Z𝑖 which implies that Yi = Z𝑖. If 𝐴
∗ is 

injective, then 𝐴𝑛−1 has dense range and Yi𝐴
𝑛−1 = λ−i(n−1)𝐴𝑛−1Yi =

λ−i(n−1)𝐴𝑛−1Z𝑖 = 𝐴𝑛−1Z𝑖 which implies that Yi = Z𝑖. ∎ 

The following example shows that 𝐸(𝐴, 𝐵) ≠ 𝑆(𝐴, 𝐵). 

Example (2.10): Let 𝐴 = (
𝛼 0
0 𝛽

), 𝑋 = (
0 1
0 0

) , 𝐵 = (
𝜆 0
0 1

), then: 

 𝐴𝑋 = α𝑋𝐵. So that 𝛼 ∈ 𝐸(𝐴, 𝐵) and 𝛼 ∉ 𝑆(𝐴, 𝐵). 

3. Some Properties of bi-extended eigenvalues and bi-extended 

eigenvectors 

  This section studies the bi-extended eigenvalues and bi-extended 

eigenvectors for the operators 𝐴 and 𝐵 when 𝐴 is Similar (Quasi-Similar) 

to 𝐵. 

Proposition (3.1): Suppose that 𝐴, 𝐵 ∈ ℬ(ℋ), then: 

1- If 𝐴 ∼ 𝐵, then E(𝐴, 𝐵) = 𝐸(𝐴) = 𝐸(𝐵). 

2- If  𝐴 ≈ 𝐵, then E(𝐴, 𝐵) = E(𝐵, 𝐴). 

3- If 𝜆 ≠ 0, then E(𝐴, 𝐵) = E(𝐼 − 𝐴, 1
𝜆⁄ 𝐼 − 𝐵), where I is the identity 

operator. 

Proof: (1) It is clear that 𝐸(𝐴) = 𝐸(𝐵) from [7]. Therefore, it is enough to 

prove E(𝐴, 𝐵) = 𝐸(𝐴). 

 Suppose that 𝜆 ∈ E(𝐴, 𝐵), then there exists a nonzero operator 𝑋 such that 

𝐴𝑋 = 𝜆𝑋𝐵. Since 𝐴 is similar to 𝐵. Then there exists an invertible 

operator 𝑇 such that 𝐵 = 𝑇−1𝐴𝑇, there is 𝐴𝑋 = 𝜆𝑋(𝑇−1𝐴𝑇). So 

𝐴(𝑋𝑇−1) = 𝜆(𝑋𝑇−1)𝐴. Since 𝑋𝑇−1 ≠ 0. Then 𝜆 ∈ E(𝐴). Thus E(𝐴, 𝐵) ⊆

𝐸(𝐴). 

Conversely, assume that 𝜆 ∈ E(𝐴), then there exists a nonzero operator 𝑌 

such that 𝐴𝑌 = 𝜆𝑌𝐴.     
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Since 𝐴 is Similar to 𝐵. Then 𝐴 = 𝑇𝐵𝑇−1, by substituting 𝐴 on the right 

side of 𝐴𝑌 = 𝜆𝑌𝐴, there is 𝐴𝑌 = 𝜆𝑌(𝑇𝐵𝑇−1). So, 𝐴(𝑌𝑇) = 𝜆(𝑌𝑇)𝐵. 

Since 𝑌𝑇 ≠ 0, there is 𝜆 ∈ E(𝐴, 𝐵). So, 𝐸(𝐴) ⊆  E(𝐴, 𝐵). Then E(𝐴, 𝐵) =

𝐸(𝐴). 

(2) Suppose that 𝜆 ∈ E(𝐴, 𝐵), then there exists a nonzero operator 𝑋 such 

that 𝐴𝑋 = 𝜆𝑋𝐵, since 𝐴 is Quasisimilar to 𝐵. Then there exists two 

operators  𝑌, 𝑍 that are injective with dense range such that 𝐴𝑌 = 𝑌𝐵, 

𝑍𝐴 = 𝐵𝑍. So, 𝐴𝑋 = 𝜆𝑋𝐵, then 𝑍𝐴𝑋 = 𝜆𝑍𝑋𝐵. Thus, 𝐵𝑍𝑋 = 𝜆𝑍𝑋𝐵. By 

multiplying both sides by 𝑍, there is 𝐵(𝑍𝑋𝑍) = 𝜆(𝑍𝑋𝑍)𝐴, since 𝑋 ≠ 0 and 

Z is injective with dense range. Then 𝑍𝑋𝑍 ≠ 0. Thus, 𝜆 ∈ E(𝐵, 𝐴). 

Assume that 𝛼 ∈ E(𝐵, 𝐴), then there exists a nonzero operator 𝑇 such that 

𝐵𝑇 = 𝛼𝑇𝐴, since 𝐴 is Quasi-similar to 𝐵. Then there exists two operators 

 𝑌, 𝑍 which are injective with dense range such that Y𝐵𝑇 = 𝛼𝑌𝑇𝐴. So, 

𝐴𝑌𝑇 = 𝛼𝑌𝑇𝐴. By multiplying both sides by 𝑌, there is 𝐴(Y𝑇𝑌) =

𝛼(𝑌𝑇𝑌)𝐵, since 𝑇 ≠ 0 and  𝑌 is injective with dense range, there is 

𝑌𝑇𝑌 ≠ 0. Then 𝛼 ∈ E(𝐴, 𝐵). Therefore, E(𝐴, 𝐵) = E(𝐵, 𝐴). 

(3) Since 𝜆 ≠ 0 and by definition of 𝐸(𝐴, 𝐵), there is 𝐴𝑋 = 𝜆𝑋𝐵. 

 So, (𝐼 − 𝐴)𝑋 = 𝜆𝑋(1
𝜆⁄ 𝐼 − 𝐵) and E(𝐴, 𝐵) = E(𝐼 − 𝐴, 1

𝜆⁄ 𝐼 − 𝐵). ∎ 

Corollary (3.2): Suppose that 𝐴, 𝐵 ∈ ℬ(ℋ). Then:  

1- If 𝐴 ∼ 𝐵, then S(𝐴, 𝐵) = 𝑆(𝐴) = 𝑆(𝐵) and QS(𝐴, 𝐵) = 𝑄𝑆(𝐴) = 𝑄𝑆(𝐵). 

2- If 𝐴 ≈ 𝐵, then S(𝐴, 𝐵) = S(𝐵, 𝐴) and QS(𝐴, 𝐵) = QS(𝐵, 𝐴). 

  Some properties for the bi-extended eigenvalues are given in the following 

proposition. 

Proposition (3.3): Suppose that 𝐴, 𝐵 ∈ ℬ(ℋ). Then: 

1- If 𝜆 ∈ E(𝐴, 𝐵), then 𝜆𝑛 ∈ E(𝐴𝑛, 𝐵𝑛) for every positive integer number 𝑛; 

also  

if 𝜆 ∈ S(𝐴, 𝐵)(𝑄𝑆(𝐴, 𝐵)), then 𝜆𝑛 ∈ S(𝐴𝑛, 𝐵𝑛)(QS(𝐴𝑛, 𝐵𝑛)). 

2- 𝑆(𝐵, 𝐴)−1 = 𝑆(𝐴, 𝐵), 𝑄𝑆(𝐵, 𝐴)−1 = 𝑄𝑆(𝐴, 𝐵) and if 𝐴 and 𝐵 are an 

invertible operators, so 

𝑆(𝐵−1, 𝐴−1) = 𝑆(𝐴, 𝐵) and 𝑄𝑆(𝐵−1, 𝐴−1) = 𝑄𝑆(𝐴, 𝐵), then 𝑆(𝐵, 𝐴)−1 =

𝑆(𝐵−1, 𝐴−1), 𝑄𝑆(𝐵, 𝐴)−1 = 𝑄𝑆(𝐵−1, 𝐴−1). 
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Proof: (1) Let 𝜆 ∈ E(𝐴, 𝐵), then there exists a nonzero operator  𝑇 such 

that 𝐴𝑇 = 𝜆𝑇𝐵. So, 𝐴𝐴𝑇 = 𝜆𝐴𝑇𝐵, and 𝐴2𝑇 = 𝜆2𝑇𝐵2 in general 𝐴𝑛𝑇 =

𝜆𝑛𝑇𝐵𝑛 for every positive integer number 𝑛. Thus, 𝜆𝑛 ∈ E(𝐴𝑛, 𝐵𝑛). 

Using the same way, 𝜆 ∈ S(𝐴, 𝐵)(𝑄𝑆(𝐴, 𝐵)) can be proved. Then 𝜆𝑛 ∈

S(𝐴𝑛, 𝐵𝑛)(QS(𝐴𝑛, 𝐵𝑛)) for every positive integer number 𝑛. 

(2) 𝑆(𝐵, 𝐴)−1 = 𝑆(𝐴, 𝐵) will be proven and the other one can be proved by 

employing the same way. Suppose that 𝜆 ∈ S(𝐴, 𝐵), then there exists an 

invertible operator  𝑇 such that 𝑇−1𝐴𝑇 = 𝜆𝐵. So, 1
𝜆⁄ 𝐴 = (𝑇−1)−1𝐵𝑇−1 

and 1
𝜆⁄ ∈ 𝑆(𝐵, 𝐴). Then 𝜆 ∈ 𝑆(𝐵, 𝐴)−1. Hence 𝑆(𝐴, 𝐵) ⊆ 𝑆(𝐵, 𝐴)−1. So, 

the prove of 𝑆(𝐵, 𝐴)−1 ⊆  𝑆(𝐴, 𝐵) is Similar. Thus 𝑆(𝐵, 𝐴)−1 = 𝑆(𝐴, 𝐵). If 

𝐴 and 𝐵 are invertible operators, then 𝑆(𝐵−1, 𝐴−1) = 𝑆(𝐴, 𝐵) can be 

proved. 

Let 𝜆 ∈ S(𝐴, 𝐵), then there exists an invertible operator  𝑇 such that 

𝑇−1𝐴𝑇 = 𝜆𝐵. So, 𝐴𝑇 = 𝜆𝑇𝐵, since 𝐴 and 𝐵 are invertible, there exists 

𝑇𝐵−1 = 𝜆𝐴𝑇−1, 𝐵−1(𝑇−1) = 𝜆(𝑇−1)𝐴−1 and 𝜆 ∈ 𝑆(𝐵−1, 𝐴−1). Therefore, 

𝑆(𝐴, 𝐵) ⊆ 𝑆(𝐵−1, 𝐴−1) and 𝑆(𝐵−1, 𝐴−1) ⊆ 𝑆(𝐴, 𝐵). Using the same way, 

𝑄𝑆(𝐵−1, 𝐴−1) = 𝑄𝑆(𝐴, 𝐵) can be proved. Similarly, the Similar 𝑆(𝐴, 𝐵) 

can be proved. Based on 𝑆(𝐵, 𝐴)−1 = 𝑆(𝐴, 𝐵) and 𝑆(𝐵−1, 𝐴−1) = 𝑆(𝐴, 𝐵), 

where 𝐴 and 𝐵 are an invertible operators, there exists 𝑆(𝐵, 𝐴)−1 =

𝑆(𝐵−1, 𝐴−1); also, when 𝐴 and 𝐵 are invertible operators, there exists 

𝑄𝑆(𝐵, 𝐴)−1 = 𝑄𝑆(𝐵−1, 𝐴−1). ∎ 

Proposition (3.4): The operators 𝐴, 𝐵, 𝐶, 𝐷, 𝑋 ∈ ℬ(ℋ), then: 

1- Ẽα(𝐴, 𝐵)Ẽβ(𝐵, 𝐶) ⊂ Ẽαβ(𝐴, 𝐶). In particular, if 𝐴 = 𝐶, then 

Ẽα(𝐴, 𝐵)Ẽβ(𝐵, 𝐴) ⊂ Ẽαβ(𝐴). 

2- Ẽ1(𝐴, 𝐵)Ẽα(𝐵, 𝐴)Ẽ1(𝐴, 𝐵) ⊂ Ẽα(𝐴, 𝐵). 

3- If 𝑋 ∈ Eα(𝐴, 𝐵)⋂Eβ(𝐶, 𝐷), then 𝑋 ∈ Eαβ(𝐶𝐴, 𝐷𝐵) ∩ Eαβ(𝐴𝐶, 𝐵𝐷). 

Proof: (1) Suppose that 𝑋 ∈ Ẽα(𝐴, 𝐵) and 𝑌 ∈ Ẽβ(𝐵, 𝐶), then 𝐴𝑋 = α𝑋𝐵, 

𝐵𝑌 = β𝑌𝐶. So, 𝐴𝑋𝑌 = α𝑋𝐵𝑌, 𝐴(𝑋𝑌) = αβ(𝑋𝑌)𝐶 and 𝑋𝑌 ∈ Ẽαβ(𝐴, 𝐶). 

This is clear in certain case. 

(2) Let  𝑇 ∈ Ẽα(𝐵, 𝐴) and 𝑋, 𝑌 ∈ Ẽ1(𝐴, 𝐵), then 𝐵𝑇 = α𝑇𝐴, 𝐴𝑋 = 𝑋𝐵 and 

𝐴𝑌 = 𝑌𝐴. So, 𝑋𝐵𝑇𝑌 = αX𝑇𝐴𝑌, 𝐴(𝑋𝑇𝑌) = α(X𝑇𝑌)𝐵 and 𝑋𝑇𝑌 ∈

Ẽα(𝐴, 𝐵). Thus, Ẽ1(𝐴, 𝐵)Ẽα(𝐵, 𝐴)Ẽ1(𝐴, 𝐵) ⊂ Ẽα(𝐴, 𝐵). 
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(3) Since 𝑋 ∈ Eα(𝐴, 𝐵) and 𝑋 ∈ Eβ(𝐶, 𝐷), then 𝐴𝑋 = α𝑋𝐵 and 𝐶𝑋 =

β𝑋𝐷. So, 𝐴𝑋𝐷 = α𝑋𝐵𝐷, (𝐴𝐶)𝑋 = αβ𝑋(𝐵𝐷), 𝑋 ∈ Eαβ(𝐴𝐶, 𝐵𝐷) and 

𝐶𝐴𝑋 = αC𝑋𝐵. Therefore, (𝐶𝐴)𝑋 = αβ𝑋(𝐷𝐵) and 𝑋 ∈ Eαβ(𝐶𝐴, 𝐷𝐵). ∎ 

Corollary (3.5): The operators 𝐴, 𝐵, 𝐶, 𝐷, 𝑋 ∈ ℬ(ℋ), then: 

1- Sα(𝐴, 𝐵)Ẽβ(𝐵, 𝐶) ⊂ Ẽαβ(𝐴, 𝐶) and QSα(𝐴, 𝐵)Ẽβ(𝐵, 𝐶) ⊂ Ẽαβ(𝐴, 𝐶). In 

particular, if 𝐴 = 𝐶, then Sα(𝐴, 𝐵)Ẽβ(𝐵, 𝐴) ⊂ Ẽαβ(𝐴) and 

𝑄Sβ(𝐴, 𝐵)Ẽα(𝐵, 𝐴) ⊂ Ẽαβ(𝐴). 

2- Sα(𝐴, 𝐵)Sβ(𝐵, 𝐶) ⊂ Sαβ(𝐴, 𝐶) and Sα(𝐴, 𝐵)𝑄Sβ(𝐵, 𝐶) ⊂ QSαβ(𝐴, 𝐶). 

3- 𝑆1(𝐴, 𝐵)Sα(𝐵, 𝐴)S1(𝐴, 𝐵) ⊂ Sα(𝐴, 𝐵) and 

QS1(𝐴, 𝐵)QSα(𝐵, 𝐴)QS1(𝐴, 𝐵) ⊂ QSα(𝐴, 𝐵). 

Proof: by employing the same way of proposition (3.4). ∎ 

Theorem (3.6): Suppose that 𝐴 ≈ 𝐴̃ and 𝐵 ≈ 𝐵̃, then E(𝐴, 𝐵) = E(𝐴̃, 𝐵̃). 

Proof: Suppose that 𝐴 ≈ 𝐴̃ and 𝐵 ≈ 𝐵̃, then there exists 𝑆, 𝑇, 𝑍, 𝑊 that are 

injective with dense range such that 𝐴𝑆 = 𝑆𝐴̃, 𝑇𝐴 = 𝐴̃𝑇, 𝐵𝑍 = 𝑍𝐵̃, 

𝑊𝐵 = 𝐵̃𝑊. Now, let λ ∈ E(𝐴, 𝐵), then there exists a nonzero operator  𝑋, 

such that  𝐴𝑋 = λ𝑋𝐵. So, 𝑇𝐴𝑋𝑍 = λ𝑇𝑋𝐵𝑍 and 𝐴̃(𝑇𝑋𝑍) = λ(𝑇𝑋𝑍)𝐵̃. 

Since 𝑋 ≠ 0 and  𝑇, 𝑍 are injective with dense range, then 𝑇𝑋𝑍 ≠ 0. So, 

λ ∈ E(𝐴̃, 𝐵̃) and E(𝐴, 𝐵) ⊆ E(𝐴̃, 𝐵̃). 

Conversely, let λ ∈ E(𝐴̃, 𝐵̃), then there exists a nonzero operator 𝑌, such 

that  𝐴̃𝑌 = λ𝑌𝐵̃. So, 𝑆𝐴̃𝑌𝑊 = λ𝑆𝑌𝐵̃𝑊 and 𝐴(𝑆𝑌𝑊) = λ(𝑆𝑌𝑊)𝐵. Since 

𝑌 ≠ 0 and 𝑆, 𝑊 are injective with dense range. Hence, 𝑆𝑌𝑊 ≠ 0, that is, 

λ ∈ E(𝐴, 𝐵). Therefore, E(𝐴̃, 𝐵̃) ⊆ E(𝐴, 𝐵) and E(𝐴̃, 𝐵̃) = E(𝐴, 𝐵). ∎ 

Proposition (3.7) [5]: Assume that 𝐴 and 𝐵 are two self adjoint operators, 

where 𝐴 is injective; if λ ∈ E(𝐴, 𝐵), then λ ∈ ℝ. 

Lemma (3.8): Suppose that 𝐴 is invertible operator and 𝐵 is nilpotent 

operator. Then the equation 𝐴𝑋 = λ𝑋𝐵 have only the zero solution. 

Proof: Suppose 𝐵 is nilpotent, then there exists a positive integer number 

 𝑛 such that 𝐵𝑛 = 0. Then 𝐴𝑋 = λ𝑋𝐵.  So, 𝐴2𝑋 = λ2𝑋𝐵2. Hence, 𝐴𝑛𝑋 =

λn𝑋𝐵𝑛 for each n, since 𝐵𝑛 = 0, there is 𝐴𝑛𝑋 = 0, and 𝐴 is invertible, 

which implies that 𝑋 = 0. ∎ 
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