On the bi-extended eigenvalues and bi-extended eigenvectors

Laith K. Shaakir¹ and Anas A. Hijab² ¹Department of Mathematics, College of Computer Sciences and Mathematics, Tikrit University e-mail: <u>Dr.LaithKhaleel@tu.edu.iq</u> ²Department of Mathematics, College of Education for Pure Sciences, Tikrit University e-mail: <u>anas_abass@tu.edu.iq</u>

الملخص

تركز هذاالبحث حول مفاهيم القيم الذاتية الموسعة الثنائية و المتجهات الذاتية الموسعة الثائية. سوف نتحرى حول العدد المعقد λ المعطاه بحيث أن A و λ مؤثر متشابه او شبه متشابة حيث A, B مؤثران مقيدان معرفة على فضاء هيلبرت \mathcal{H} .

Abstract

This paper focuses on the concepts of bi-extended eigenvalues and biextended eigenvectors. It investigates the complex number λ that makes A and λ B Similar or Quasi-Similar operators where A, B are bounded linear operators defined on Hilbert space \mathcal{H} .

Keywords: bi-extended eigenvalue, bi-extended eigenvector, Similar operator, Quasi-Similar operator.

1. Introduction and terminology

Let \mathcal{H} be a separable complex Hilbert space and $\mathcal{B}(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H} . For any operator A in $\mathcal{B}(\mathcal{H})$, the spectrum of A are denoted by $\sigma(A)$. The adjoint of $T \in \mathcal{B}(\mathcal{H})$ is denoted by T^* . A complex number λ is called an extended eigenvalue of $A \in \mathcal{B}(\mathcal{H})$ if there exists a non-zero operator $X \in \mathcal{B}(\mathcal{H})$ satisfying the equation $AX = \lambda XA$. Such an operator X is called extended eigenvector corresponding to λ , for more details see [1,2,3]. The set of all extended eigenvalues of A is denoted by E(A), and the set of all extended eigenvectors of A corresponding to λ is denoted by $E_{\lambda}(A)$. It is clear that $E_1(A)$ hold and equal to $\{A\}'$, such that $\{A\}'$ is the commutate of A. Now we define the complex number λ is biextended eigenvalue for the operators $A, B \in \mathcal{B}(\mathcal{H})$, if there exists a nonzero operator $X \in \mathcal{B}(\mathcal{H})$ such that $AX = \lambda XB$.

The set of all bi-extended eigenvalues denote by E(A, B), the operator X is said to be bi-extended eigenvector; while the set of all bi-extended eigenvectors denote by $E_{\lambda}(A, B)$. It is noteworthy that if A and B are two bounded linear operators on a Hilbert space \mathcal{H} , then A is similar to B if there exists invertible operator $T \in \mathcal{B}(\mathcal{H})$, such that AT = TB. These operators are denoted by A~B. If \mathcal{H}_1 and \mathcal{H}_2 are Hilbert spaces and $A \in \mathcal{B}(\mathcal{H}_1)$ and $B \in \mathcal{B}(\mathcal{H}_2)$, then A is Quasi-Similar to B if there exist two injective with dense range bounded operators T_1 from \mathcal{H}_1 to \mathcal{H}_2 and T_2 from \mathcal{H}_2 to \mathcal{H}_1 , such that $T_1A = BT_1$ and $AT_2 = T_2B$. This is denoted by $A \approx B$ [6]. Now we define the set S(A, B) of all complex number λ , such that the operator A is similar to the operator λB , that is S(A, B) = $\{\lambda \in \mathbb{C}: A \sim \lambda B\}$, if $\lambda \in S(A, B)$. Then $S_{\lambda}(A, B)$ refers to the set of all invertible operators X, such that $AX = \lambda XB$. Also, the set QS(A, B) of all complex number λ is define, such that the operator A is Quasi-Similar to the operator λB . Therefore, $QS(A, B) = \{\lambda \in \mathbb{C}: A \approx \lambda B\}$ if $\lambda \in QS(A, B)$. Then, $QS_{\lambda}(A, B)$ refers to the set all injective and dense range operators X, such that $AX = X(\lambda B)$. This study will always assume that A, B are nonzero operators. This paper examines the sets S(A, B) and QS(A, B), the relations between these sets and the set E(A, B); as well as giving some properties and important results.

2. Concepts of the bi-extended eigenvalues and bi-extended eigenvectors.

This section defines the concepts of the bi-extended eigenvalues and biextended eigenvectors.

Definition (2.1): We say that the complex number λ is bi-extended eigenvalue for the operators A and $B \in \mathcal{B}(\mathcal{H})$, if there exists a nonzero operator $X \in \mathcal{B}(\mathcal{H})$, such that

$$AX = \lambda XB$$

(1)

The set of all bi-extended eigenvalues is denoted by E(A, B), the operator X is said to be bi-extended eigenvector; while the set of all bi extended eigenvectors is denoted by $E_{\lambda}(A, B)$, that is,

 $E(A, B) = \{\lambda \in \mathbb{C}: \text{there exists a nonzero operator } X \text{ satisfying } AX = \lambda XB \}$ $E_{\lambda}(A, B) = \{X \in \mathcal{B}(\mathcal{H}): X \neq 0 \text{ and } AX = \lambda XB \}$

Proposition (2.2) : Let *A* and $B \in \mathcal{B}(\mathcal{H})$. Then, $\tilde{E}_{\lambda}(A, B) = E_{\lambda}(A, B) \cup \{0\}$ is closed linear subspace of $\mathcal{B}(\mathcal{H})$.

Proof: First, we can prove that $\tilde{E}_{\lambda}(A, B)$ is linear subspace of $\mathcal{B}(\mathcal{H})$. Suppose that $T_1, T_2 \in \tilde{E}_{\lambda}(A, B)$, and $\alpha, \beta \in \mathbb{C}$, then $AT_1 = \lambda T_1 B$ and $AT_2 = \lambda T_2 B$. Hence, $A(\alpha T_1 + \beta T_2) = (\alpha A T_1 + \beta A T_2) = (\alpha \lambda T_1 B + \beta \lambda T_2 B) = \lambda(\alpha T_1 + \beta T_2) B$. Therefore, $\alpha T_1 + \beta T_2 \in \tilde{E}_{\lambda}(A, B)$. Now, it shall be assume that $T_n \in \tilde{E}_{\lambda}(A, B)$ for each positive integer number n, such that $T_n \to T$. Then $AT_n \to AT$ and $\lambda T_n B \to \lambda T B$, since $AT_n = \lambda T_n B$ for every n, then $AT = \lambda T B$. Thus $T \in \tilde{E}_{\lambda}(A, B)$. Then, $\tilde{E}_{\lambda}(A, B)$ is closed linear subspace of $\mathcal{B}(\mathcal{H})$.

Theorem (2.3) [2]: If *A* and *B* are two operators on Hilbert space \mathcal{H} , such that $\sigma(A) \cap \sigma(B) = \phi$, then X = 0 is the only solution to the operator equation AX - XB = 0.

Proposition (2.4): For any two operators, $A, B \in \mathcal{B}(\mathcal{H})$, there is $E(A, B) \subset \{\lambda \in \mathbb{C} : \sigma(A) \cap \sigma(\lambda B) \neq \phi\}.$

Proof: Suppose that $\lambda \in E(A, B)$. Then, there exists a nonzero operator $X \in \mathcal{B}(\mathcal{H})$, such that $AX = \lambda XB$. Therefore $\sigma(A) \cap \sigma(\lambda B) \neq \phi$, by theorem (2.3). Hence, $\lambda \in \{\lambda \in \mathbb{C} : \sigma(A) \cap \sigma(\lambda B) \neq \phi\}$. Thus $E(A, B) \subset \{\lambda \in \mathbb{C} : \sigma(A) \cap \sigma(\lambda B) \neq \phi\}$.

Example (2.5): If *U* is Unilateral shift operator and *T* has dense range, then the only solution of $UX = \lambda XT$ is X = 0.

Solution: It is clear that if $\lambda = 0$, then UX = 0 solution BUX = 0, thus X = 0. So, assume that $\lambda \neq 0$ and $UX = \lambda XT$. Then $X^*U^* = \overline{\lambda}T^*X^*$. Let $\{e_n\}_{n=0}^{\infty}$ be the usual orthonormal basis. Hence, $Ue_i = e_{i+1}$ and $U^*e_{i+1} = e_i$ for every $i = 1, 2, ..., U^*e_1 = 0$. Now, since *T* has dense range, then T^* is injective. So, $X^*U^*(e_0) = \overline{\lambda}T^*X^*(e_0)$, yields $0 = \overline{\lambda}T^*X^*(e_0)$, since $\lambda \neq 0$ and T^* is injective, then $X^*(e_0) = 0$ and $X^*U^*(e_1) = \overline{\lambda}T^*X^*(e_1)$, so that $X^*(e_0) = \overline{\lambda}T^*X^*(e_1)$. Therefore, $X^*(e_1) = 0$. By employing a similar manner and using the mathematical induction, there is $X^*(e_n) = 0$, for each *n*. Then, X = 0.

Proposition (2.6): Suppose that A and B are two operators on finite dimensional space \mathcal{H} :

- 1- If *A* and *B* are not invertible, then $E(A, B) = \{\lambda \in \mathbb{C} : \sigma(A) \cap \sigma(\lambda B) \neq \phi\} = \mathbb{C}$.
- 2- If *A* and *B* are invertible, then $E(A, B) = \{\lambda \in \mathbb{C} : \sigma(A) \cap \sigma(\lambda B) \neq \phi\}$.

Proof: The case when *A* and *B* are not invertible is considered firstly. In this case, both *A* and *B*^{*} have non-trivial kernels. Let \hat{X} : Ker(*B*^{*}) \rightarrow Ker(*A*) be a nonzero operator. Define $X = \hat{X}\mathcal{P}$, where \mathcal{P} denotes the orthogonal projection on kernel of *B*^{*}. Clearly, $X \neq 0$. Note further that AX = 0, since for every $f \in \mathcal{H}$, there is $A(\hat{X}\mathcal{P}(f)) = 0$. By defining \hat{X} , there is $\hat{X}\mathcal{P}(f) \in \text{Ker}(A)$ for each $f \in \mathcal{H}$, there is AX = 0 and XB = 0. In other words, $\hat{X}\mathcal{P}(B(f)) = 0$, since $\hat{X}\mathcal{P}(B(f))$ for each $f \in \mathcal{H}$. $B(f) \in Rang(B) = (\text{Ker}(B^*))^{\perp}$. Then, $B(f) \in (\text{Ker}(B^*))^{\perp}$, but $\mathcal{P}(B(f)) = \begin{cases} 0 & \text{if } B(f) \notin \text{Ker}(B^*) \\ B(f) & \text{if } B(f) \in \text{Ker}(B^*) \end{cases}$ (2)

If $B(f) \notin \text{Ker}(B^*)$, then $\mathcal{P}(B(f)) = 0$ is hold. If $B(f) \in \text{Ker}(B^*)$; therefore, $B(f) \in \text{Ker}(B^*) \cap (\text{Ker}(B^*))^{\perp} = \{0\}$. Then, $\mathcal{P}(B(f)) = 0$. Since \dot{X} is a nonzero linear operator, then $\dot{X}(0) = 0$; thus, XB = 0. Hence, $AX = \lambda XB$ for any $\lambda \in \mathbb{C}$. Consequently, $E(A, B) = \mathbb{C}$. Since A and B are not invertible for any complex number $\lambda, 0 \in \sigma(A) \cap \sigma(\lambda B)$, thus $\{\lambda \in \mathbb{C} : \sigma(A) \cap \sigma(\lambda B) \neq \phi\} = \mathbb{C}$.

Secondly, the study considers the case when *A* and *B* are invertible so that $0 \notin \sigma(A) \cap \sigma(\lambda B)$. To show that $\{\lambda \in \mathbb{C} : \sigma(A) \cap \sigma(\lambda B) \neq 0\} \subseteq E(A, B)$, then suppose that β is a (necessarily non-zero) complex number such that $\beta \in \sigma(A)$ and $\beta \in \sigma(\lambda B)$. Since $\beta \in \sigma(A)$, then there exists a vector *u* such that $Au = \beta u$. On the other hand, $\beta \in \sigma(\lambda B)$ which implies that $\lambda \neq 0$; so, $\beta/\lambda \in \sigma(B)$ and $(\beta/\lambda) \in \sigma(B^*)$ as well as there is a vector *v*

such that $B^*v = \overline{(\beta/\lambda)}v$. Let $X = u \otimes v$, then $AX = \lambda XB$. So, for every

$$f \in \mathcal{H}$$
. Then, $AXf = A(u \otimes v)f = (A(f, v)u) = (f, v)Au = \beta(f, v)u$ and
 $\lambda XBf = \lambda ((u \otimes v)B)(f)) = \lambda (B(f), v)u = \lambda (f, B^*v)u =$
 $\lambda (f, \overline{\binom{\beta}{\lambda}}v)u = \beta(f, v)u$; consequently, $\beta \in E(A, B)$.

The Similar and Quasi-Similar on E(A, B) will be define using the same way of E(A, B).

Definition (2.7): Suppose that $A, B \in \mathcal{B}(\mathcal{H})$, then: $S(A, B) = \{\lambda \in \mathbb{C} : A \text{ is Similar to } \lambda B\}.$ $QS(A, B) = \{\lambda \in \mathbb{C} : A \text{ is Quasisimilar to } \lambda B\}.$

One can prove easily the following remark:

Remark (2.8): Suppose that A and B are nonzero operators in $\mathcal{B}(\mathcal{H})$. Then:

- 1- $S(0,0) = \mathbb{C}, S(A,0) = \emptyset$ and $S(0,B) = \{0\}.$
- 2- $S(\alpha I, I) = \{\alpha\}$; also if $\alpha \neq 0$, then $S(I, \alpha I) = \{1/\alpha\}$, where I is the identity

operator.

- 3- $S(\alpha A, B) = S(A, 1/\alpha B)$ for every nonzero complex number α .
- 4- S(A, B) ⊆ QS(A, B) ⊆ E(A, B).
 Proof: (1) It is clarified in definition (2.7).
 (2) There is S(αI, I) = {λ ∈ C: αI is Similar to λI} = {α}. By the same way, it has been proved that S(I, αI) = {¹/_α}, where α ≠ 0.
 - (3) Using the same definition, $S(\alpha A, B) = S(A, 1/\alpha B)$ for every nonzero

complex number α .

(4) Using the same way in [7], and since every invertible is injective, this is also nonzero; we have $S(A, B) \subseteq QS(A, B) \subseteq E(A, B)$.

Based on Remark (2.8), S(A, B) is not necessary equal to S(B, A).

Theorem (2.9): Suppose that *A* and *B* are two bounded operators such that *A* or A^* is injective and $\lambda^n = 1$ for some positive integer number $n, \lambda \neq 1$. If $AX = \lambda XB$ (Brief $X \in \tilde{E}_{\lambda}(A, B)$), then the operators

$$Y_i = \sum_{j=0}^{n-1} \lambda^{ij} A^{n-j-1} X B^j, i = 0, 1, \dots, n-1$$

are the unique operators that satisfy $AY_i = \lambda^i Y_i A$, i = 1, 2, ..., n - 1.

Proof: Suppose that A or A^* is injective and $\lambda^n = 1$ for some positive integer number $n, \lambda \neq 1$. So if $X \in \widetilde{E}_{\lambda}(A, B)$, then $AX = \lambda XB$. So, $A^n X = \lambda^n XB^n$ and $A^n X = XB^n$. Let $Y_i = \sum_{j=0}^{n-1} \lambda^{ij} A^{n-j-1} XB^j$, then $AY_i = \sum_{j=0}^{n-1} \lambda^{ij} A^{n-j} XB^j = A^n X + \sum_{j=1}^{n-1} \lambda^{ij} A^{n-j} XB^j$ $= XB^n + \sum_{j=0}^{n-1} \lambda^{ij} A^{n-j} XB^j = \sum_{j=0}^{n-1} \lambda^{i(k+1)} A^{n-k-1} XB^{k+1} = \left(\sum_{j=0}^{n-1} \lambda^{ik} A^{n-k-1} XB^k\right) (\lambda^i B) = \lambda^i Y_i B$

$$\sum_{j=1}^{k=0} \left(\sum_{k=0}^{k=0} \right)^{(k-j)-1}$$

Since $\lambda^n = 1, \lambda \neq 1$. Then $1 - \lambda^n = 0$. So, $(1 - \lambda)(1 + \lambda + \dots + \lambda^{n-1}) =$

0. Generally $\sum_{i=0}^{n-1} \lambda^{ij} = 0$, when $j \neq 0$ and the sum is *n* when j = 0.

$$\sum_{i=0}^{n-1} Y_i = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \lambda^{ij} A^{n-j-1} X B^j = \sum_{j=0}^{n-1} A^{n-j-1} X B^j \sum_{i=0}^{n-1} \lambda^{ij} = n A^{n-1} X$$

Now, suppose that Z_0, Z_1, \dots, Z_{n-1} are operators such that $nA^{n-1}X = \sum_{i=0}^{n-1} Z_i$ and $AZ_i = \lambda^i Z_i B$, for each i, there is $nA^{n-1}Y_i = \sum_{j=0}^{n-1} \lambda^{ij} A^{n-j-1} (nA^{n-1}X)B^j = \sum_{j=0}^{n-1} \lambda^{ij} A^{n-j-1} (\sum_{k=0}^{n-1} Z_k)B^j$ $= \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} \lambda^{ij} A^{n-j-1}B^j \lambda^{-ki} Z_k$, when B = A, then $nA^{n-1}Y_i = nA^{n-1}Z_i$.

If A is injective, then $A^{n-1}Y_i = A^{n-1}Z_i$ which implies that $Y_i = Z_i$. If A^* is injective, then A^{n-1} has dense range and $Y_iA^{n-1} = \lambda^{-i(n-1)}A^{n-1}Y_i = \lambda^{-i(n-1)}A^{n-1}Z_i = A^{n-1}Z_i$ which implies that $Y_i = Z_i$.

The following example shows that $E(A, B) \neq S(A, B)$.

Example (2.10): Let
$$A = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$$
, $X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix}$, then:
 $AX = \alpha XB$. So that $\alpha \in E(A, B)$ and $\alpha \notin S(A, B)$.

3. Some Properties of bi-extended eigenvalues and bi-extended eigenvectors

This section studies the bi-extended eigenvalues and bi-extended eigenvectors for the operators A and B when A is Similar (Quasi-Similar) to B.

Proposition (3.1): Suppose that $A, B \in \mathcal{B}(\mathcal{H})$, then:

1- If
$$A \sim B$$
, then $E(A, B) = E(A) = E(B)$.

2- If $A \approx B$, then E(A, B) = E(B, A).

3- If $\lambda \neq 0$, then $E(A,B) = E(I - A, \frac{1}{\lambda}I - B)$, where I is the identity

operator.

Proof: (1) It is clear that E(A) = E(B) from [7]. Therefore, it is enough to prove E(A, B) = E(A).

Suppose that $\lambda \in E(A, B)$, then there exists a nonzero operator X such that $AX = \lambda XB$. Since A is similar to B. Then there exists an invertible operator T such that $B = T^{-1}AT$, there is $AX = \lambda X(T^{-1}AT)$. So $A(XT^{-1}) = \lambda(XT^{-1})A$. Since $XT^{-1} \neq 0$. Then $\lambda \in E(A)$. Thus $E(A, B) \subseteq E(A)$.

Conversely, assume that $\lambda \in E(A)$, then there exists a nonzero operator *Y* such that $AY = \lambda YA$.

Since *A* is Similar to *B*. Then $A = TBT^{-1}$, by substituting *A* on the right side of $AY = \lambda YA$, there is $AY = \lambda Y(TBT^{-1})$. So, $A(YT) = \lambda (YT)B$. Since $YT \neq 0$, there is $\lambda \in E(A, B)$. So, $E(A) \subseteq E(A, B)$. Then E(A, B) = E(A).

(2) Suppose that $\lambda \in E(A, B)$, then there exists a nonzero operator X such that $AX = \lambda XB$, since A is Quasisimilar to B. Then there exists two operators Y, Z that are injective with dense range such that AY = YB, ZA = BZ. So, $AX = \lambda XB$, then $ZAX = \lambda ZXB$. Thus, $BZX = \lambda ZXB$. By multiplying both sides by Z, there is $B(ZXZ) = \lambda(ZXZ)A$, since $X \neq 0$ and Z is injective with dense range. Then $ZXZ \neq 0$. Thus, $\lambda \in E(B, A)$.

Assume that $\alpha \in E(B, A)$, then there exists a nonzero operator *T* such that $BT = \alpha TA$, since *A* is Quasi-similar to *B*. Then there exists two operators *Y*, *Z* which are injective with dense range such that $YBT = \alpha YTA$. So, $AYT = \alpha YTA$. By multiplying both sides by *Y*, there is $A(YTY) = \alpha(YTY)B$, since $T \neq 0$ and *Y* is injective with dense range, there is $YTY \neq 0$. Then $\alpha \in E(A, B)$. Therefore, E(A, B) = E(B, A).

(3) Since $\lambda \neq 0$ and by definition of E(A, B), there is $AX = \lambda XB$.

So, $(I - A)X = \lambda X(1/\lambda I - B)$ and $E(A, B) = E(I - A, 1/\lambda I - B)$.

Corollary (3.2): Suppose that $A, B \in \mathcal{B}(\mathcal{H})$. Then:

1- If $A \sim B$, then S(A, B) = S(A) = S(B) and QS(A, B) = QS(A) = QS(B).

2- If $A \approx B$, then S(A, B) = S(B, A) and QS(A, B) = QS(B, A).

Some properties for the bi-extended eigenvalues are given in the following proposition.

Proposition (3.3): Suppose that $A, B \in \mathcal{B}(\mathcal{H})$. Then:

1- If $\lambda \in E(A, B)$, then $\lambda^n \in E(A^n, B^n)$ for every positive integer number *n*; also

if $\lambda \in S(A, B)(QS(A, B))$, then $\lambda^n \in S(A^n, B^n)(QS(A^n, B^n))$.

2- $S(B,A)^{-1} = S(A,B), QS(B,A)^{-1} = QS(A,B)$ and if A and B are an invertible operators, so $S(B^{-1}, A^{-1}) = S(A,B)$ and $QS(B^{-1}, A^{-1}) = QS(A,B)$, then $S(B,A)^{-1} = S(B^{-1}, A^{-1}), QS(B,A)^{-1} = QS(B^{-1}, A^{-1})$.

Proof: (1) Let $\lambda \in E(A, B)$, then there exists a nonzero operator T such that $AT = \lambda TB$. So, $AAT = \lambda ATB$, and $A^2T = \lambda^2 TB^2$ in general $A^nT = \lambda^n TB^n$ for every positive integer number n. Thus, $\lambda^n \in E(A^n, B^n)$.

Using the same way, $\lambda \in S(A, B)(QS(A, B))$ can be proved. Then $\lambda^n \in S(A^n, B^n)(QS(A^n, B^n))$ for every positive integer number *n*.

(2) $S(B, A)^{-1} = S(A, B)$ will be proven and the other one can be proved by employing the same way. Suppose that $\lambda \in S(A, B)$, then there exists an invertible operator *T* such that $T^{-1}AT = \lambda B$. So, $1/\lambda A = (T^{-1})^{-1}BT^{-1}$

and $1/\lambda \in S(B,A)$. Then $\lambda \in S(B,A)^{-1}$. Hence $S(A,B) \subseteq S(B,A)^{-1}$. So,

the prove of $S(B,A)^{-1} \subseteq S(A,B)$ is Similar. Thus $S(B,A)^{-1} = S(A,B)$. If A and B are invertible operators, then $S(B^{-1},A^{-1}) = S(A,B)$ can be proved.

Let $\lambda \in S(A, B)$, then there exists an invertible operator T such that $T^{-1}AT = \lambda B$. So, $AT = \lambda TB$, since A and B are invertible, there exists $TB^{-1} = \lambda AT^{-1}$, $B^{-1}(T^{-1}) = \lambda(T^{-1})A^{-1}$ and $\lambda \in S(B^{-1}, A^{-1})$. Therefore, $S(A, B) \subseteq S(B^{-1}, A^{-1})$ and $S(B^{-1}, A^{-1}) \subseteq S(A, B)$. Using the same way, $QS(B^{-1}, A^{-1}) = QS(A, B)$ can be proved. Similarly, the Similar S(A, B) can be proved. Based on $S(B, A)^{-1} = S(A, B)$ and $S(B^{-1}, A^{-1}) = S(A, B)$, where A and B are an invertible operators, there exists $S(B, A)^{-1} = S(B^{-1}, A^{-1})$; also, when A and B are invertible operators, there exists $QS(B, A)^{-1} = QS(B^{-1}, A^{-1})$.

Proposition (3.4): The operators $A, B, C, D, X \in \mathcal{B}(\mathcal{H})$, then:

- 1- $\widetilde{E}_{\alpha}(A, B)\widetilde{E}_{\beta}(B, C) \subset \widetilde{E}_{\alpha\beta}(A, C)$. In particular, if A = C, then $\widetilde{E}_{\alpha}(A, B)\widetilde{E}_{\beta}(B, A) \subset \widetilde{E}_{\alpha\beta}(A)$.
- 2- $\widetilde{E}_1(A, B)\widetilde{E}_{\alpha}(B, A)\widetilde{E}_1(A, B) \subset \widetilde{E}_{\alpha}(A, B).$
- 3- If $X \in E_{\alpha}(A, B) \cap E_{\beta}(C, D)$, then $X \in E_{\alpha\beta}(CA, DB) \cap E_{\alpha\beta}(AC, BD)$.

Proof: (1) Suppose that $X \in \tilde{E}_{\alpha}(A, B)$ and $Y \in \tilde{E}_{\beta}(B, C)$, then $AX = \alpha XB$, $BY = \beta YC$. So, $AXY = \alpha XBY$, $A(XY) = \alpha\beta(XY)C$ and $XY \in \tilde{E}_{\alpha\beta}(A, C)$. This is clear in certain case.

(2) Let $T \in \widetilde{E}_{\alpha}(B, A)$ and $X, Y \in \widetilde{E}_{1}(A, B)$, then $BT = \alpha TA$, AX = XB and AY = YA. So, $XBTY = \alpha XTAY$, $A(XTY) = \alpha(XTY)B$ and $XTY \in \widetilde{E}_{\alpha}(A, B)$. Thus, $\widetilde{E}_{1}(A, B)\widetilde{E}_{\alpha}(B, A)\widetilde{E}_{1}(A, B) \subset \widetilde{E}_{\alpha}(A, B)$.

(3) Since $X \in E_{\alpha}(A, B)$ and $X \in E_{\beta}(C, D)$, then $AX = \alpha XB$ and $CX = \beta XD$. So, $AXD = \alpha XBD$, $(AC)X = \alpha\beta X(BD)$, $X \in E_{\alpha\beta}(AC, BD)$ and $CAX = \alpha CXB$. Therefore, $(CA)X = \alpha\beta X(DB)$ and $X \in E_{\alpha\beta}(CA, DB)$. **Corollary (3.5):** The operators $A, B, C, D, X \in \mathcal{B}(\mathcal{H})$, then:

- 1- $S_{\alpha}(A, B)\widetilde{E}_{\beta}(B, C) \subset \widetilde{E}_{\alpha\beta}(A, C)$ and $QS_{\alpha}(A, B)\widetilde{E}_{\beta}(B, C) \subset \widetilde{E}_{\alpha\beta}(A, C)$. In particular, if A = C, then $S_{\alpha}(A, B)\widetilde{E}_{\beta}(B, A) \subset \widetilde{E}_{\alpha\beta}(A)$ and $QS_{\beta}(A, B)\widetilde{E}_{\alpha}(B, A) \subset \widetilde{E}_{\alpha\beta}(A)$.
- 2- $S_{\alpha}(A, B)S_{\beta}(B, C) \subset S_{\alpha\beta}(A, C)$ and $S_{\alpha}(A, B)QS_{\beta}(B, C) \subset QS_{\alpha\beta}(A, C)$.
- 3- $S_1(A, B)S_{\alpha}(B, A)S_1(A, B) \subset S_{\alpha}(A, B)$ and $QS_1(A, B)QS_{\alpha}(B, A)QS_1(A, B) \subset QS_{\alpha}(A, B)$. **Proof:** by employing the same way of proposition (3.4). ■

Theorem (3.6): Suppose that $A \approx \tilde{A}$ and $B \approx \tilde{B}$, then $E(A, B) = E(\tilde{A}, \tilde{B})$.

Proof: Suppose that $A \approx \tilde{A}$ and $B \approx \tilde{B}$, then there exists S, T, Z, W that are injective with dense range such that $AS = S\tilde{A}$, $TA = \tilde{A}T$, $BZ = Z\tilde{B}$, $WB = \tilde{B}W$. Now, let $\lambda \in E(A, B)$, then there exists a nonzero operator X, such that $AX = \lambda XB$. So, $TAXZ = \lambda TXBZ$ and $\tilde{A}(TXZ) = \lambda(TXZ)\tilde{B}$.

Since $X \neq 0$ and T, Z are injective with dense range, then $TXZ \neq 0$. So, $\lambda \in E(\tilde{A}, \tilde{B})$ and $E(A, B) \subseteq E(\tilde{A}, \tilde{B})$.

Conversely, let $\lambda \in E(\tilde{A}, \tilde{B})$, then there exists a nonzero operator *Y*, such that $\tilde{A}Y = \lambda Y\tilde{B}$. So, $S\tilde{A}YW = \lambda SY\tilde{B}W$ and $A(SYW) = \lambda(SYW)B$. Since $Y \neq 0$ and S, W are injective with dense range. Hence, $SYW \neq 0$, that is, $\lambda \in E(A, B)$. Therefore, $E(\tilde{A}, \tilde{B}) \subseteq E(A, B)$ and $E(\tilde{A}, \tilde{B}) = E(A, B)$.

Proposition (3.7) [5]: Assume that *A* and *B* are two self adjoint operators, where *A* is injective; if $\lambda \in E(A, B)$, then $\lambda \in \mathbb{R}$.

Lemma (3.8): Suppose that *A* is invertible operator and *B* is nilpotent operator. Then the equation $AX = \lambda XB$ have only the zero solution.

Proof: Suppose *B* is nilpotent, then there exists a positive integer number *n* such that $B^n = 0$. Then $AX = \lambda XB$. So, $A^2X = \lambda^2 XB^2$. Hence, $A^nX = \lambda^n XB^n$ for each n, since $B^n = 0$, there is $A^nX = 0$, and *A* is invertible, which implies that X = 0.

References:

[1] A. Biswas, A. Lambert and S. Petrovic. *Extended eigenvalues and the Volterra operator*. Glasg.Math.J.44;521-534. 2002.

[2] A. Biswas, S. Petrovic. *On extended eigenvalues of operators*. Integral Equations and Operator Theory.55;233-248. 2006.

[3] A.Lambert. *Hyperinvariant subspaces and extended eigenvalues*. New York.J.Math.10; 83-88. 2004.

[4] C.C.Cowen. *Commutates and the operator equation* $AX = \lambda XA$. Pacific J.Math.80;337-340. 1979.

[5] J.Yang, Hong-ke Du. *A note on commutatively up to a factor of bounded operators*. proc.Am.Math.Soc.132; 1713-1720.2004.

[6] I.Sititi, Sammy W. Musundi, Bernard M. Nzambi, Kikete W. Dennis. *Note on quasi-similarity of operators in Hilbert space*. International Journal of Mathematical Archive-6(7); 49-54.2015.

[7] L. K. Shaakir and A. A. Hijab. *Similar and Quasi-similar On Extended Eigenvalues and Extended Eigenvectors*. Tikrit J.PSW.1(1);183-194.2013.