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Abstract

This paper focuses on the concepts of bi-extended eigenvalues and bi-
extended eigenvectors. It investigates the complex number A that makes A
and AB Similar or Quasi-Similar operators where A, B are bounded linear
operators defined on Hilbert space H .
Keywords: bi-extended eigenvalue, bi-extended eigenvector, Similar
operator, Quasi-Similar operator.

1. Introduction and terminology

Let H be a separable complex Hilbert space and B(H) the algebra of all
bounded linear operators on #'. For any operator A in B(H), the spectrum
of A are denoted by o(A). The adjoint of T € B(H) is denoted by T*. A
complex number A is called an extended eigenvalue of A € B(H) if there
exists a non-zero operator X € B(H) satisfying the equation AX = AXA.
Such an operator X is called extended eigenvector corresponding to A, for
more details see [1,2,3]. The set of all extended eigenvalues of A is denoted
by E(A), and the set of all extended eigenvectors of A corresponding to A is
denoted by E, (A). It is clear that E;(A) hold and equal to {A}', such that
{A}'is the commutate of A. Now we define the complex number A is bi-
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extended eigenvalue for the operators A,B € B(H), if there exists a
nonzero operator X € B(H) such that AX = AXB.

The set of all bi-extended eigenvalues denote by E (A4, B), the operator X
Is said to be bi-extended eigenvector; while the set of all bi-extended
eigenvectors denote by E; (4, B). It is noteworthy that if A and B are two
bounded linear operators on a Hilbert space #', then A is similar to B if
there exists invertible operator T € B(H), such that AT = TB. These
operators are denoted by A~B. If H; and H, are Hilbert spaces and
A € B(H,) and B € B(H,), then A is Quasi-Similar to B if there exist two
injective with dense range bounded operators T; from H; to H, and T,
from H, to H,, such that T;A = BT, and AT, = T,B. This is denoted by
A = B [6]. Now we define the set S(A, B) of all complex number 2, such
that the operator A is similar to the operator AB, that is S(A,B) =
{Ae C: A~AB}, if A€ S(A,B). Then S,(A,B) refers to the set of all
invertible operators X, such that AX = AXB. Also, the set QS(A,B) of all
complex number A is define, such that the operator A is Quasi-Similar to
the operator AB. Therefore, QS(A,B) ={A € C: A= AB} if A € QS(A, B).
Then, QS, (A, B) refers to the set all injective and dense range operators X,
such that AX = X(AB). This study will always assume that A, B are non-
zero operators. This paper examines the sets S(A,B) and QS(A,B), the
relations between these sets and the set E(A, B); as well as giving some
properties and important results.

2. Concepts of the bi-extended eigenvalues and bi-extended
eigenvectors.

This section defines the concepts of the bi-extended eigenvalues and bi-
extended eigenvectors.

Definition (2.1): We say that the complex number A is bi-extended
eigenvalue for the operators A and B € B(H), if there exists a nonzero
operator X € B(H), such that

AX = AXB (1)

The set of all bi-extended eigenvalues is denoted by E(A4,B), the
operator X is said to be bi-extended eigenvector; while the set of all bi
extended eigenvectors is denoted by E; (A4, B), that is,

E(A, B) = {1 € C: there exists a nonzero operator X satisfying AX = AXB}
Ey(A,B) ={X € B(H):X # 0 and AX = AXB}
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Proposition (2.2) : Let Aand B € B(H). Then, E;(4,B) = E; (4, B)U{0}
is closed linear subspace of B(H).
Proof: First, we can prove that E;(4,B) is linear subspace of B(H).
Suppose that Ty, T, € E;(4,B), and «,B € C, then AT, = AT;B and
AT, = AT,B.  Hence, A(aT; + pT,) = (aAT; + BAT,) = (aAT,B +
BAT,B) = A(aT, + BT,)B. Therefore, aT, + BT, € E;(4,B). Now, it
shall be assume that T, € E;(A4,B) for each positive integer number n,
such thatT,, - T. Then AT,, - AT and AT,,B — ATB, since AT, = AT,B
for every n, then AT = ATB. Thus T € E;(4, B). Then, E; (4, B) is closed
linear subspace of B(H). m
Theorem (2.3) [2]: If A and B are two operators on Hilbert space #, such
that 0(A) N o(B) = ¢, then X = 0 is the only solution to the operator
equation AX — XB = 0.
Proposition (2.4): For any two operators, A, B € B(H), there is
E(A,B)c{A€C: a(A)Na(AB) # ¢}.
Proof: Suppose that A € E(4, B). Then, there exists a nonzero operator
X € B(H), such that AX = AXB. Therefore a(A)No(AB) # ¢,by theorem
(2.3). Hence, A€ {A€C:0(A)Na(AB) # ¢}. Thus E(A,B)c{A€C:
0(A)No(AB) # ¢}.m
Example (2.5): If U is Unilateral shift operator and T has dense range, then
the only solution of UX = AXT is X = 0.
Solution: It is clear that if A = 0, then UX = 0 solution BUX = 0, thus
X = 0. So, assume that A = 0 and UX = AXT. Then X*U* = AT*X*. Let
{en}n=o be the usual orthonormal basis. Hence, Ue; = e;,; and U%e; 1 =
e; foreveryi=1,2,...,U"e; = 0. Now, since T has dense range, then T*is
injective. So, X*U*(ey) = AT*X*(ey), yields 0 = AT*X*(e,), since A # 0
and T*is injective, then X*(e,) = 0 and X*U*(e;) = AT*X*(e,), S0 that
X*(ey) = AT*X*(e;). Therefore, X*(e;) = 0. By employing a similar
manner and using the mathematical induction, there is X*(e,) =
0,foreachn. Then, X =0. =
Proposition (2.6): Suppose that A and B are two operators on finite
dimensional space #:
1- If A and B are not invertible, then E(4,B) = {1 € C: 6(A)No(AB) # ¢} = C.
2- If A and B are invertible, then E(4,B) = {1 € C: 6(A)Na(AB) # ¢}.
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Proof: The case when A and B are not invertible is considered firstly. In
this case, both A4 and B* have non-trivial kernels. Let X:Ker(B*) —
Ker(A) be a nonzero operator. Define X = X, where P denotes the
orthogonal projection on kernel of B*. Clearly, X # 0. Note further that
AX = 0, since for every f € 3, there is A(XP(f)) = 0. By defining X,
there is XP(f) € Ker(A) for each f € H, there is AX = 0 and XB = 0. In
other words, XP(B(f)) = 0, since XP(B(f)) for each f € H.
B(f) € Rang(B) = (Ker(B*))*. Then, B(f) € (Ker(B*))*, but
P(B() = {B(zf)lfif é@ffﬁfﬁs{)}

If B(f) & Ker(B*), then P(B(f)) =0 is hold. If B(f) € Ker(B*);
therefore, B(f) € Ker(B*) n (Ker(B*))* = {0}. Then, P(B(f)) =0.
Since X is a nonzero linear operator, then X(0) = 0; thus, XB = 0. Hence,
AX = AXB for any A € C. Consequently, E(4,B) = C. Since A and B are
not invertible for any complex number 4,0 € 6(A)Na(AB), thus {1 €
C:a(A)No(AB) + ¢} = C.

Secondly, the study considers the case when A and B are invertible so that
0 ¢ a(A)No(AB). To show that {1 € C:c(A)No(AB) # 0} € E(4, B),
then suppose that g is a (necessarily non-zero) complex number such that
B €ad(A) and B € a(AB). Since B € a(A), then there exists a vector u
such that Au = Bu. On the other hand, g € 6(AB) which implies that

(2)

A # 0; so, B/A € o(B) and (B/A) € o(B*) as well as there is a vector v

such that B*v = (ﬁ//l)”' Let X = u®uv, then AX = AXB. So, for every

f EXH.Then, AXf = A(u®v)f = (A(f,v)u) = (f,v)Au = B(f,v)u and
AXBf = M((w®v)B)(f)) = A(B(f),v)u = A(f, B'v)u =

A(f, (ﬂ//1> v)u = B(f, v)u; consequently, B € E(4,B). m

The Similar and Quasi-Similar on E(4, B) will be define using the same
way of E(4, B).

Definition (2.7): Suppose that A, B € B(H), then:

S(A,B) = {4 € C: Ais Similar to AB}.

QS(A,B) = {4 € C: A is Quasisimilar to AB}.
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One can prove easily the following remark:
Remark (2.8): Suppose that A and B are nonzero operators in B(H).
Then:

1- 5(0,0) =C, S(A4,0) =@ and S(0,B) = {0},

2- S(al,l) ={a}; also if a # 0, then S(I, al) = {1/a}, where | is the identity

operator.
3- S(aA,B) = S(4, 1/a B) for every nonzero complex number a.

4- S(A,B) € QS(A,B) S E(A,B).
Proof: (1) It is clarified in definition (2.7).
(2) There is S(al,I) = {A € C: al is Similar to AI} = {a}. By the same
way, it has been proved that S(I, al) = {1/a}, where a # 0.

(3) Using the same definition, S(aA, B) = S(4, 1/a B) for every nonzero

complex number a.

(4) Using the same way in [7], and since every invertible is injective, this is
also nonzero; we have S(A,B) € QS(A,B) € E(A,B). m

Based on Remark (2.8), S(4, B) is not necessary equal to S(B, A).
Theorem (2.9): Suppose that A and B are two bounded operators such that
A or A is injective and A™ = 1 for some positive integer number n, A # 1.
If AX = AXB (Brief X € E, (4, B)), then the operators

n—1
Y,= » AlA™/-1xBJi=01,..,n—1

%
are the unique operators that satisfy AY; = AlY;4,i=1,2,.. ,n — 1.
Proof: Suppose that A or A* is injective and A" = 1 for some positive
integer number n, A # 1. So if X € E,(4,B), then AX = AXB. So,
A"X =A"XB" and  A"X =XB". Let Y, =XjjAVA"/TIXB,
then AY; = Y1 AT A" IXB/ = A"X + Y21 A AMTXB)

n-1 n-1 n—1
= XB™ + z A AMIXBI = Z Al gn-k=1y pk+1 — <Z Alk A"—k—l)(B") (XB) =A'v;B
j=1 k=0 k=0

Since A" =1, A# 1. Then 1 = A" = 0. So,(1 —=)(L+ A+ -+ A1) =
0. Generally X7 AU = 0, when j # 0 and the sum is n when j = 0.
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n-—1 n—-1n-1 n-—1 n-—1
Z Y, = A An=J=1XB) = z AMJT1XBJ z Al = nAntx
i=0 i=0 j=0 j=0 i=0

Now, suppose that Z,,Z,,...,Z,_, are operators such that nA" X =
yrtz, and  AZ;=AZB, for each i, there s
nAY Y, = YIS0 A AT (A X)B) = RIS AT AT TN (ERZ5 Zy ) BY
= Yo XRoo M AMITIBIATK Z,  when B =A, then nA"ly, =
nA"1Z; .

If A is injective, then A"~1Y; = A""1Z; which implies that Y; = Z,. If A* is
injective, then A”~! has dense range and Y;A" 1 =A"in-Lyn-ly =
ATi=D) gn=17. = A"=17. which implies that Y; = Z;. m

The following example shows that E(A, B) # S(A, B).

Example (2.10): Let A = (C(; 2) X = (8 (1)) , B = (g (1)) then:

AX = oaXB.Sothata € E(A,B) and a &€ S(4, B).
3. Some Properties of bi-extended eigenvalues and bi-extended
eigenvectors

This section studies the bi-extended eigenvalues and bi-extended
eigenvectors for the operators A and B when A is Similar (Quasi-Similar)
to B.
Proposition (3.1): Suppose that A, B € B(H), then:

If A~ B, then E(4,B) = E(A) = E(B).

If A~ B,then E(4, B) = E(B, A).

If 10, then E(4,B) =E(l —A,1/,1—B), where | is the identity

operator.

Proof: (1) It is clear that E(A) = E(B) from [7]. Therefore, it is enough to
prove E(4, B) = E(A).

Suppose that A € E(4, B), then there exists a nonzero operator X such that
AX = AXB. Since A is similar to B. Then there exists an invertible
operator T such that B =T AT, there is AX = AX(T 'AT). So
AXT™1) = A(XT1)A. Since XT~! # 0. Then 1 € E(A). Thus E(4,B) <
E(A).

Conversely, assume that A € E(A), then there exists a nonzero operator Y
such that AY = AYA.
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Since A is Similar to B. Then A = TBT 1, by substituting A on the right
side of AY = AYA, there is AY = AY(TBT~1). So, A(YT) = A(YT)B.

Since YT # 0, there is 1 € E(4,B). So, E(A) € E(4,B). Then E(4,B) =
E(A).

(2) Suppose that A € E(A4, B), then there exists a nonzero operator X such
that AX = AXB, since A is Quasisimilarto B. Then there exists two
operators Y,Z that are injective with dense range such that AY = YB,
ZA = BZ. So, AX = AXB, then ZAX = AZXB. Thus, BZX = AZXB. By
multiplying both sides by Z, there is B(ZXZ) = A(ZXZ)A, since X # 0 and
Z is injective with dense range. Then ZXZ # 0. Thus, A € E(B, A).

Assume that a € E(B, A), then there exists a nonzero operator T such that
BT = aTA, since A is Quasi-similar to B. Then there exists two operators
Y,Z which are injective with dense range such that YBT = aYTA. So,
AYT = aYTA. By multiplying both sides by Y, there isA(YTY) =
a(YTY)B, since T # 0 and Y is injective with dense range, there is
YTY + 0. Then a € E(4, B). Therefore, E(4,B) = E(B, A).

(3) Since A # 0 and by definition of E (4, B), there is AX = AXB.

So, (I —A)X = x(Y/; 1 —B)and E(4,B) =E( —A,1/,1 - B). m

Corollary (3.2): Suppose that A, B € B(H). Then:

If A ~ B, then S(4,B) = S(A) = S(B) and QS(4, B) = QS(4) = QS(B).
If A=~ B, thenS(4,B) = S(B,A) and QS(4, B) = QS(B, A).

Some properties for the bi-extended eigenvalues are given in the following
proposition.

Proposition (3.3): Suppose that A, B € B(H). Then:

If A € E(4,B), then A™ € E(A"™, B™) for every positive integer number n;
also

if 1 € S(4,B)(QS(A, B)), then 2™ € S(A™, B™)(QS(A™, B™)).
S(B,A)"*=S(4,B),QS(B,A)"* = QS(4,B) and if A and B are an
invertible operators, so
S(B™L,A™) = S(4,B) and QS(B™,A™Y) = QS(4,B), then S(B,A)™' =
S(B™L, A7), QS(B,A)"t =QS(B~1,A™Y).
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Proof: (1) Let A € E(4, B), then there exists a nonzero operator T such
that AT = ATB. So, AAT = AATB, and A?T = A%TB? in general A"T =
A"T B™ for every positive integer number n. Thus, A™ € E(A™, B™).

Using the same way, A1 € S(4,B)(QS(A,B)) can be proved. Then A" €
S(A™, B™)(QS(A™, B™)) for every positive integer number n.

(2) S(B,A)t = S(A, B) will be proven and the other one can be proved by
employing the same way. Suppose that A € S(4, B), then there exists an

invertible operator T such that T-1AT = AB. So, 1//1A = (T H=ipT1
and 1/, € S(B, A). Then 1 € S(B,A)™". Hence S(4,B) < S(B,A)™*. So,

the prove of S(B,A)™! € S(4, B) is Similar. Thus S(B,4)™! = S(4,B). If
A and B are invertible operators, then S(B~1,A™1) = S(4,B) can be
proved.

Let 1 € S(4,B), then there exists an invertible operator T such that
T~1AT = AB. So, AT = ATB, since A and B are invertible, there exists
TB 1= QAT L, BTY(TH) = AT HAtand 1 € S(B~1,A71). Therefore,
S(A,B)c S(B™1A™Y) and S(B71,471) € S(4, B). Using the same way,
QS(B~1,A™1) = QS(4, B) can be proved. Similarly, the Similar S(4, B)
can be proved. Based on S(B,A)™! = S(4,B) and S(B™1,A™1) = 5(4, B),
where A and B are an invertible operators, there exists S(B,A)™! =
S(B~1,A71); also, when A and B are invertible operators, there exists
QS(B,A)™'=QS(B~L,A™ ). m

Proposition (3.4): The operators A,B,C,D, X € B(H), then:
Eq(A,B)Eg(B,C) c Egg(4,C). In  particular, if A=C, then
E.(A, B)Eg(B,A) c Eyp(A).

E,(4,B)E, (B, AE,(4,B) cE (4,B).

If X € E(4, BYNER(C, D), then X € E,g(CA, DB) N Eqg(AC, BD).

Proof: (1) Suppose that X € E,(A, B) and Y € Eg(B, C), then AX = aXB,
BY = BYC. So, AXY = aXBY, A(XY) = aB(XY)C and XY € E,4(4,C).
This is clear in certain case.

(2) Let T € E,(B,A) and X,Y € E,(4, B), then BT = aTA, AX = XB and
AY =YA. So, XBTY = aXTAY, A(XTY) =a(XTY)B and XTY €
E.(4,B). Thus, E; (4, B)E,(B,A)E;(4,B) c E (4, B).
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(3) Since X € E((4,B) and X € Eg(C,D), then AX = aXB and CX =
BXD. So, AXD =aXBD, (AC)X = aBX(BD), X € E.(AC,BD) and
CAX = aCXB. Therefore, (CA)X = aBX(DB) and X € E,3(CA,DB). m
Corollary (3.5): The operators A,B,C,D, X € B(H), then:
S«(4,B)Eg(B,C) c Eqg(A,€) and QS,(A4,B)Eg(B,C) c Eqp(4,0). In
particular, if A=C, then S,(4 B)Eg(B,A) cEp(4) and
QSp(4, B)E,(B,A) c Eu(A).

S«(A4,B)Sp(B, C) © Sup(4,C) and Sy (4, B)QSp(B,C) < QSqp(4, 0).
S1(4,B)S.(B,A)S,(A,B) c S,(A,B) and
QS1(4, B)QS«(B,4)QS1(4, B) © QS4(4, B).

Proof: by employing the same way of proposition (3.4). m

Theorem (3.6): Suppose that A ~ A and B ~ B, then E(4, B) = E(4, B).
Proof: Suppose that A ~ 4 and B =~ B, then there exists S, T, Z, W that are
injective with dense range such that AS = SA, TA = AT, BZ = ZB,
WB = BW. Now, let A € E(4, B), then there exists a nonzero operator X,
such that AX = AXB. So, TAXZ = ATXBZ and A(TXZ) = M(TXZ)B.
Since X + 0 and T, Z are injective with dense range, then TXZ #+ 0. So,
A€ E(4,B)and E(4,B) € E(4,B).

Conversely, let A € E(4, B), then there exists a nonzero operator Y, such
that AY = AYB. So, SAYW = ASYBW and A(SYW) = A(SYW)B. Since
Y # 0 and S, W are injective with dense range. Hence, SYW = 0, that is,
A € E(4, B). Therefore, E(4,B) S E(A,B) and E(4,B) = E(4,B). m
Proposition (3.7) [5]: Assume that A and B are two self adjoint operators,
where A is injective; if A € E(4,B), then A € R.

Lemma (3.8): Suppose that A is invertible operator and B is nilpotent
operator. Then the equation AX = AXB have only the zero solution.

Proof: Suppose B is nilpotent, then there exists a positive integer number
n such that B®™ = 0. Then AX = AXB. So,A%?X = A*>XB?. Hence, A"X =
A"XB™ for each n, since B™ = 0, there is A"X =0, and A is invertible,
which impliesthat X = 0. m
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