On the bi-extended eigenvalues and bi-extended eigenvectors

Laith K. Shaakir ${ }^{1}$ and Anas A. Hijab ${ }^{2}$
${ }^{1}$ Department of Mathematics, College of Computer Sciences and
Mathematics, Tikrit University
e-mail: Dr.LaithKhaleel@tu.edu.iq
${ }^{2}$ Department of Mathematics, College of Education for Pure Sciences, Tikrit University
e-mail: anas_abass@tu.edu.iq

تزكز هذاالبحث حول مفاهيم القيم الذاتية الموسعة الثنائية و المتجهات الذاتية الموسعة الثائية. سوف نتحرى حول العدد المعقد λ المعطاه بحيث أن A و λ و مؤثر متتـابه او شبه متتشابة حيث . \mathcal{H} مؤثنران مقيدان معرفة على فضاء هيلبرت A, B

Abstract

This paper focuses on the concepts of bi-extended eigenvalues and biextended eigenvectors. It investigates the complex number λ that makes A and $\lambda \mathrm{B}$ Similar or Quasi-Similar operators where A, B are bounded linear operators defined on Hilbert space \mathcal{H}.

Keywords: bi-extended eigenvalue, bi-extended eigenvector, Similar operator, Quasi-Similar operator.

1. Introduction and terminology

Let \mathcal{H} be a separable complex Hilbert space and $\mathcal{B}(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H}. For any operator A in $\mathcal{B}(\mathcal{H})$, the spectrum of A are denoted by $\sigma(A)$. The adjoint of $T \in \mathcal{B}(\mathcal{H})$ is denoted by T^{*}. A complex number λ is called an extended eigenvalue of $\mathrm{A} \in \mathcal{B}(\mathcal{H})$ if there exists a non-zero operator $\mathrm{X} \in \mathcal{B}(\mathcal{H})$ satisfying the equation $\mathrm{AX}=\lambda \mathrm{XA}$. Such an operator X is called extended eigenvector corresponding to λ, for more details see $[1,2,3]$. The set of all extended eigenvalues of A is denoted by $E(A)$, and the set of all extended eigenvectors of A corresponding to λ is denoted by $E_{\lambda}(A)$. It is clear that $E_{1}(A)$ hold and equal to $\{A\}^{\prime}$, such that $\{A\}^{\prime}$ 'is the commutate of A . Now we define the complex number λ is bi-
extended eigenvalue for the operators $A, B \in \mathcal{B}(\mathcal{H})$, if there exists a nonzero operator $X \in \mathcal{B}(\mathcal{H})$ such that $A X=\lambda X B$.

The set of all bi-extended eigenvalues denote by $E(A, B)$, the operator X is said to be bi-extended eigenvector; while the set of all bi-extended eigenvectors denote by $E_{\lambda}(A, B)$. It is noteworthy that if A and B are two bounded linear operators on a Hilbert space \mathcal{H}, then A is similar to B if there exists invertible operator $\mathrm{T} \in \mathcal{B}(\mathcal{H})$, such that $\mathrm{AT}=\mathrm{TB}$. These operators are denoted by $\mathrm{A} \sim \mathrm{B}$. If \mathcal{H}_{1} and \mathcal{H}_{2} are Hilbert spaces and $\mathrm{A} \in \mathcal{B}\left(\mathcal{H}_{1}\right)$ and $\mathrm{B} \in \mathcal{B}\left(\mathcal{H}_{2}\right)$, then A is Quasi-Similar to B if there exist two injective with dense range bounded operators T_{1} from \mathcal{H}_{1} to \mathcal{H}_{2} and T_{2} from \mathcal{H}_{2} to \mathcal{H}_{1}, such that $\mathrm{T}_{1} \mathrm{~A}=\mathrm{BT}_{1}$ and $\mathrm{AT}_{2}=\mathrm{T}_{2} \mathrm{~B}$. This is denoted by $\mathrm{A} \approx \mathrm{B}[6]$. Now we define the set $\mathrm{S}(\mathrm{A}, \mathrm{B})$ of all complex number λ, such that the operator A is similar to the operator λB, that is $S(A, B)=$ $\{\lambda \in \mathbb{C}: A \sim \lambda B\}$, if $\lambda \in S(A, B)$. Then $S_{\lambda}(A, B)$ refers to the set of all invertible operators X, such that $A X=\lambda X B$. Also, the set $Q S(A, B)$ of all complex number λ is define, such that the operator A is Quasi-Similar to the operator λB. Therefore, $Q S(A, B)=\{\lambda \in \mathbb{C}: A \approx \lambda B\}$ if $\lambda \in Q S(A, B)$. Then, $\mathrm{QS}_{\lambda}(\mathrm{A}, \mathrm{B})$ refers to the set all injective and dense range operators X, such that $\mathrm{AX}=\mathrm{X}(\lambda \mathrm{B})$. This study will always assume that A, B are nonzero operators. This paper examines the sets $\mathrm{S}(\mathrm{A}, \mathrm{B})$ and $\mathrm{QS}(\mathrm{A}, \mathrm{B})$, the relations between these sets and the set $\mathrm{E}(\mathrm{A}, \mathrm{B})$; as well as giving some properties and important results.

2. Concepts of the bi-extended eigenvalues and bi-extended eigenvectors.

This section defines the concepts of the bi-extended eigenvalues and biextended eigenvectors.
Definition (2.1): We say that the complex number λ is bi-extended eigenvalue for the operators A and $B \in \mathcal{B}(\mathcal{H})$, if there exists a nonzero operator $X \in \mathcal{B}(\mathcal{H})$, such that $A X=\lambda X B$
The set of all bi-extended eigenvalues is denoted by $E(A, B)$, the operator X is said to be bi-extended eigenvector; while the set of all bi extended eigenvectors is denoted by $E_{\lambda}(A, B)$, that is,
$E(A, B)=\{\lambda \in \mathbb{C}$: there exists a nonzero operator X satisfying $A X=\lambda X B\}$ $E_{\lambda}(A, B)=\{X \in \mathcal{B}(\mathcal{H}): X \neq 0$ and $A X=\lambda X B\}$

Proposition (2.2): Let A and $B \in \mathcal{B}(\mathcal{H})$. Then, $\tilde{E}_{\lambda}(A, B)=E_{\lambda}(A, B) \cup\{0\}$ is closed linear subspace of $\mathcal{B}(\mathcal{H})$.
Proof: First, we can prove that $\tilde{E}_{\lambda}(A, B)$ is linear subspace of $\mathcal{B}(\mathcal{H})$. Suppose that $T_{1}, T_{2} \in \tilde{E}_{\lambda}(A, B)$, and $\alpha, \beta \in \mathbb{C}$, then $A T_{1}=\lambda T_{1} B$ and $A T_{2}=\lambda T_{2} B$. Hence, $\quad A\left(\alpha T_{1}+\beta T_{2}\right)=\left(\alpha A T_{1}+\beta A T_{2}\right)=\left(\alpha \lambda T_{1} B+\right.$ $\left.\beta \lambda T_{2} B\right)=\lambda\left(\alpha T_{1}+\beta T_{2}\right) B$. Therefore, $\alpha T_{1}+\beta T_{2} \in \tilde{E}_{\lambda}(A, B)$. Now, it shall be assume that $T_{n} \in \tilde{E}_{\lambda}(A, B)$ for each positive integer number n, such that $T_{n} \rightarrow T$. Then $A T_{n} \rightarrow A T$ and $\lambda T_{n} B \rightarrow \lambda T B$, since $A T_{n}=\lambda T_{n} B$ for every n, then $A T=\lambda T B$. Thus $T \in \widetilde{E}_{\lambda}(A, B)$. Then, $\widetilde{E}_{\lambda}(A, B)$ is closed linear subspace of $\mathcal{B}(\mathcal{H})$.
Theorem (2.3) [2]: If A and B are two operators on Hilbert space \mathcal{H}, such that $\sigma(A) \cap \sigma(B)=\phi$, then $X=0$ is the only solution to the operator equation $A X-X B=0$.
Proposition (2.4): For any two operators, $A, B \in \mathcal{B}(\mathcal{H})$, there is $\mathrm{E}(A, B) \subset\{\lambda \in \mathbb{C}: \sigma(A) \cap \sigma(\lambda B) \neq \phi\}$.
Proof: Suppose that $\lambda \in \mathrm{E}(A, B)$. Then, there exists a nonzero operator $X \in \mathcal{B}(\mathcal{H})$, such that $A X=\lambda X B$. Therefore $\sigma(A) \cap \sigma(\lambda B) \neq \phi$, by theorem (2.3). Hence, $\lambda \in\{\lambda \in \mathbb{C}: \sigma(A) \cap \sigma(\lambda B) \neq \phi\}$. Thus $\mathrm{E}(A, B) \subset\{\lambda \in \mathbb{C}$: $\sigma(A) \cap \sigma(\lambda B) \neq \phi\}$.
Example (2.5): If U is Unilateral shift operator and T has dense range, then the only solution of $U X=\lambda X T$ is $X=0$.
Solution: It is clear that if $\lambda=0$, then $U X=0$ solution $B U X=0$, thus $X=0$. So, assume that $\lambda \neq 0$ and $U X=\lambda X T$. Then $X^{*} U^{*}=\bar{\lambda} T^{*} X^{*}$. Let $\left\{e_{n}\right\}_{n=0}^{\infty}$ be the usual orthonormal basis. Hence, $U e_{i}=e_{i+1}$ and $U^{*} e_{i+1}=$ e_{i} for every $i=1,2, \ldots, U^{*} e_{1}=0$. Now, since T has dense range, then T^{*} is injective. So, $X^{*} U^{*}\left(e_{0}\right)=\bar{\lambda} T^{*} X^{*}\left(e_{0}\right)$, yields $0=\bar{\lambda} T^{*} X^{*}\left(e_{0}\right)$, since $\lambda \neq 0$ and T^{*} is injective, then $X^{*}\left(e_{0}\right)=0$ and $X^{*} U^{*}\left(e_{1}\right)=\bar{\lambda} T^{*} X^{*}\left(e_{1}\right)$, so that $X^{*}\left(e_{0}\right)=\bar{\lambda} T^{*} X^{*}\left(e_{1}\right)$. Therefore, $X^{*}\left(e_{1}\right)=0$. By employing a similar manner and using the mathematical induction, there is $X^{*}\left(e_{n}\right)=$ 0 , for each n. Then, $X=0$.
Proposition (2.6): Suppose that A and B are two operators on finite dimensional space \mathcal{H} :
1- If A and B are not invertible, then $\mathrm{E}(A, B)=\{\lambda \in \mathbb{C}: \sigma(A) \cap \sigma(\lambda B) \neq \phi\}=\mathbb{C}$.
2- If A and B are invertible, then $\mathrm{E}(A, B)=\{\lambda \in \mathbb{C}: \sigma(A) \cap \sigma(\lambda B) \neq \phi\}$.

Proof: The case when A and B are not invertible is considered firstly. In this case, both A and B^{*} have non-trivial kernels. Let $\dot{X}: \operatorname{Ker}\left(B^{*}\right) \rightarrow$ $\operatorname{Ker}(A)$ be a nonzero operator. Define $X=X \dot{X} \mathcal{P}$, where \mathcal{P} denotes the orthogonal projection on kernel of B^{*}. Clearly, $X \neq 0$. Note further that $A X=0$, since for every $f \in \mathcal{H}$, there is $A(X \dot{X} \mathcal{P}(f))=0$. By defining X, there is $\dot{X} \mathcal{P}(f) \in \operatorname{Ker}(A)$ for each $f \in \mathcal{H}$, there is $A X=0$ and $X B=0$. In other words, $\dot{X} \mathcal{P}(B(f))=0$, since $\hat{X} \mathcal{P}(B(f))$ for each $f \in \mathcal{H}$.
$B(f) \in \operatorname{Rang}(B)=\left(\operatorname{Ker}\left(B^{*}\right)\right)^{\perp}$. Then, $B(f) \in\left(\operatorname{Ker}\left(B^{*}\right)\right)^{\perp}$, but
$\mathcal{P}(\boldsymbol{B}(\boldsymbol{f}))=\left\{\begin{array}{c}0 \text { if } \boldsymbol{B}(\boldsymbol{f}) \notin \boldsymbol{\operatorname { K e r }}\left(\boldsymbol{B}^{*}\right) \\ \boldsymbol{B}(\boldsymbol{f}) \text { if } \boldsymbol{B}(\boldsymbol{f}) \in \operatorname{Ker}\left(\boldsymbol{B}^{*}\right)\end{array}\right\}$
If $B(f) \notin \operatorname{Ker}\left(B^{*}\right)$, then $\mathcal{P}(B(f))=0$ is hold. If $B(f) \in \operatorname{Ker}\left(B^{*}\right)$; therefore, $B(f) \in \operatorname{Ker}\left(B^{*}\right) \cap\left(\operatorname{Ker}\left(B^{*}\right)\right)^{\perp}=\{0\}$. Then, $\mathcal{P}(B(f))=0$. Since X is a nonzero linear operator, then $\dot{X}(0)=0$; thus, $X B=0$. Hence, $A X=\lambda X B$ for any $\lambda \in \mathbb{C}$. Consequently, $\mathrm{E}(A, B)=\mathbb{C}$. Since A and B are not invertible for any complex number $\lambda, 0 \in \sigma(A) \cap \sigma(\lambda B)$, thus $\{\lambda \in$ $\mathbb{C}: \sigma(A) \cap \sigma(\lambda B) \neq \phi\}=\mathbb{C}$.
Secondly, the study considers the case when A and B are invertible so that $0 \notin \sigma(A) \cap \sigma(\lambda B)$. To show that $\{\lambda \in \mathbb{C}: \sigma(A) \cap \sigma(\lambda B) \neq 0\} \subseteq \mathrm{E}(A, B)$, then suppose that β is a (necessarily non-zero) complex number such that $\beta \in \sigma(A)$ and $\beta \in \sigma(\lambda B)$. Since $\beta \in \sigma(A)$, then there exists a vector u such that $A u=\beta u$. On the other hand, $\beta \in \sigma(\lambda B)$ which implies that $\lambda \neq 0$; so, ${ }^{\beta} / \lambda \in \sigma(B)$ and $\overline{(\beta / \lambda)} \in \sigma\left(B^{*}\right)$ as well as there is a vector v such that $B^{*} v=\overline{(\beta / \lambda)} v$. Let $X=u \otimes v$, then $A X=\lambda X B$. So, for every $f \in \mathcal{H}$. Then, $A X f=A(u \otimes v) f=(A(f, v) u)=(f, v) A u=\beta(f, v) u$ and $\lambda X B f=\lambda((u \otimes v) B)(f))=\lambda(B(f), v) u=\lambda\left(f, B^{*} v\right) u=$
$\lambda(f, \overline{(\beta / \lambda)} v) u=\beta(f, v) u$; consequently, $\beta \in \mathrm{E}(A, B)$.
The Similar and Quasi-Similar on $\mathrm{E}(A, B)$ will be define using the same way of $\mathrm{E}(A, B)$.
Definition (2.7): Suppose that $A, B \in \mathcal{B}(\mathcal{H})$, then:
$S(A, B)=\{\lambda \in \mathbb{C}: A$ is Similar to $\lambda B\}$.
$Q S(A, B)=\{\lambda \in \mathbb{C}: A$ is Quasisimilar to $\lambda B\}$.

One can prove easily the following remark:
Remark (2.8): Suppose that A and B are nonzero operators in $\mathcal{B}(\mathcal{H})$. Then:
1- $S(0,0)=\mathbb{C}, S(A, 0)=\emptyset$ and $S(0, B)=\{0\}$.
2- $S(\alpha I, I)=\{\alpha\}$; also if $\alpha \neq 0$, then $S(I, \alpha I)=\{1 / \alpha\}$, where I is the identity operator.
3- $S(\alpha A, B)=S(A, 1 / \alpha B)$ for every nonzero complex number α.
4- $S(A, B) \subseteq Q S(A, B) \subseteq E(A, B)$.
Proof: (1) It is clarified in definition (2.7).
(2) There is $S(\alpha I, I)=\{\lambda \in \mathbb{C}$: αI is Similar to $\lambda I\}=\{\alpha\}$. By the same way, it has been proved that $S(I, \alpha I)=\{1 / \alpha\}$, where $\alpha \neq 0$.
(3) Using the same definition, $S(\alpha A, B)=S(A, 1 / \alpha B)$ for every nonzero complex number α.
(4) Using the same way in [7], and since every invertible is injective, this is also nonzero; we have $S(A, B) \subseteq Q S(A, B) \subseteq E(A, B)$.
Based on Remark (2.8), $S(A, B)$ is not necessary equal to $S(B, A)$.
Theorem (2.9): Suppose that A and B are two bounded operators such that A or A^{*} is injective and $\lambda^{n}=1$ for some positive integer number $n, \lambda \neq 1$. If $A X=\lambda X B$ (Brief $X \in \widetilde{\mathrm{E}}_{\lambda}(A, B)$), then the operators
$Y_{i}=\sum_{j=0}^{n-1} \lambda^{\mathrm{ij}} A^{n-j-1} X B^{j}, i=0,1, \ldots, n-1$
are the unique operators that satisfy $A Y_{i}=\lambda^{\mathrm{i}} Y_{i} A, i=1,2, \ldots, n-1$.
Proof: Suppose that A or A^{*} is injective and $\lambda^{\mathrm{n}}=1$ for some positive integer number $n, \lambda \neq 1$. So if $X \in \widetilde{\mathrm{E}}_{\lambda}(A, B)$, then $A X=\lambda X B$. So, $A^{n} X=\lambda^{\mathrm{n}} X B^{n}$ and $A^{n} X=X B^{n}$. Let $Y_{i}=\sum_{j=0}^{n-1} \lambda^{\mathrm{ij}} A^{n-j-1} X B^{j}$, then $A Y_{i}=\sum_{j=0}^{n-1} \lambda^{\mathrm{ij}} A^{n-j} X B^{j}=A^{n} X+\sum_{j=1}^{n-1} \lambda^{\mathrm{ij}} A^{n-j} X B^{j}$
$=X B^{n}+\sum_{j=1}^{n-1} \lambda^{\mathrm{ij}} A^{n-j} X B^{j}=\sum_{k=0}^{n-1} \lambda^{\mathrm{i}(\mathrm{k}+1)} A^{n-k-1} X B^{k+1}=\left(\sum_{k=0}^{n-1} \lambda^{\mathrm{ik}} A^{n-k-1} X B^{k}\right)\left(\lambda^{\mathrm{i}} B\right)=\lambda^{\mathrm{i}} Y_{i} B$
Since $\lambda^{n}=1, \lambda \neq 1$. Then $1-\lambda^{n}=0$. So, $(1-\lambda)\left(1+\lambda+\cdots+\lambda^{n-1}\right)=$ 0 . Generally $\sum_{i=0}^{n-1} \lambda^{\mathrm{ij}}=0$, when $j \neq 0$ and the sum is n when $j=0$.
$\sum_{i=0}^{n-1} \mathrm{Y}_{\mathrm{i}}=\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \lambda^{\mathrm{ij}} A^{n-j-1} X B^{j}=\sum_{j=0}^{n-1} A^{n-j-1} X B^{j} \sum_{i=0}^{n-1} \lambda^{\mathrm{ij}}=n A^{n-1} X$
Now, suppose that $Z_{0}, Z_{1}, \ldots, Z_{n-1}$ are operators such that $n A^{n-1} X=$ $\sum_{i=0}^{n-1} \mathrm{Z}_{i}$ and $A Z_{i}=\lambda^{\mathrm{i}} Z_{i} B$, for each i, there is $n A^{n-1} \mathrm{Y}_{\mathrm{i}}=\sum_{j=0}^{n-1} \lambda^{\mathrm{ij}} A^{n-j-1}\left(n A^{n-1} X\right) B^{j}=\sum_{j=0}^{n-1} \lambda^{\mathrm{ij}} A^{n-j-1}\left(\sum_{k=0}^{n-1} \mathrm{Z}_{k}\right) B^{j}$ $=\sum_{j=0}^{n-1} \sum_{k=0}^{n-1} \lambda^{\mathrm{ij}} A^{n-j-1} B^{j} \lambda^{-\mathrm{ki}} \mathrm{Z}_{k}$, when $\quad B=A$, then $n A^{n-1} \mathrm{Y}_{\mathrm{i}}=$ $n A^{n-1} \mathrm{Z}_{i}$.
If A is injective, then $A^{n-1} \mathrm{Y}_{\mathrm{i}}=A^{n-1} \mathrm{Z}_{i}$ which implies that $\mathrm{Y}_{\mathrm{i}}=\mathrm{Z}_{i}$. If A^{*} is injective, then A^{n-1} has dense range and $\mathrm{Y}_{\mathrm{i}} A^{n-1}=\lambda^{-\mathrm{i}(\mathrm{n}-1)} A^{n-1} \mathrm{Y}_{\mathrm{i}}=$ $\lambda^{-\mathrm{i}(\mathrm{n}-1)} A^{n-1} \mathrm{Z}_{i}=A^{n-1} \mathrm{Z}_{i}$ which implies that $\mathrm{Y}_{\mathrm{i}}=\mathrm{Z}_{i}$.
The following example shows that $E(A, B) \neq S(A, B)$.
Example (2.10): Let $A=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right), X=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{ll}\lambda & 0 \\ 0 & 1\end{array}\right)$, then:
$A X=\alpha X B$. So that $\alpha \in E(A, B)$ and $\alpha \notin S(A, B)$.

3. Some Properties of bi-extended eigenvalues and bi-extended eigenvectors

This section studies the bi-extended eigenvalues and bi-extended eigenvectors for the operators A and B when A is Similar (Quasi-Similar) to B.
Proposition (3.1): Suppose that $A, B \in \mathcal{B}(\mathcal{H})$, then:
1- If $A \sim B$, then $\mathrm{E}(A, B)=E(A)=E(B)$.
2- If $A \approx B$, then $\mathrm{E}(A, B)=\mathrm{E}(B, A)$.
3- If $\lambda \neq 0$, then $\mathrm{E}(A, B)=\mathrm{E}(I-A, 1 / \lambda I-B)$, where I is the identity operator.
Proof: (1) It is clear that $E(A)=E(B)$ from [7]. Therefore, it is enough to prove $\mathrm{E}(A, B)=E(A)$.
Suppose that $\lambda \in \mathrm{E}(A, B)$, then there exists a nonzero operator X such that $A X=\lambda X B$. Since A is similar to B. Then there exists an invertible operator T such that $B=T^{-1} A T$, there is $A X=\lambda X\left(T^{-1} A T\right)$. So $A\left(X T^{-1}\right)=\lambda\left(X T^{-1}\right) A$. Since $X T^{-1} \neq 0$. Then $\lambda \in \mathrm{E}(A)$. Thus $\mathrm{E}(A, B) \subseteq$ $E(A)$.
Conversely, assume that $\lambda \in \mathrm{E}(A)$, then there exists a nonzero operator Y such that $A Y=\lambda Y A$.

Since A is Similar to B. Then $A=T B T^{-1}$, by substituting A on the right side of $A Y=\lambda Y A$, there is $A Y=\lambda Y\left(T B T^{-1}\right)$. So, $A(Y T)=\lambda(Y T) B$.
Since $Y T \neq 0$, there is $\lambda \in \mathrm{E}(A, B)$. So, $E(A) \subseteq \mathrm{E}(A, B)$. Then $\mathrm{E}(A, B)=$ $E(A)$.
(2) Suppose that $\lambda \in \mathrm{E}(A, B)$, then there exists a nonzero operator X such that $A X=\lambda X B$, since A is Quasisimilar to B. Then there exists two operators Y, Z that are injective with dense range such that $A Y=Y B$, $Z A=B Z$. So, $A X=\lambda X B$, then $Z A X=\lambda Z X B$. Thus, $B Z X=\lambda Z X B$. By multiplying both sides by Z, there is $B(Z X Z)=\lambda(Z X Z) A$, since $X \neq 0$ and Z is injective with dense range. Then $Z X Z \neq 0$. Thus, $\lambda \in \mathrm{E}(B, A)$.
Assume that $\alpha \in \mathrm{E}(B, A)$, then there exists a nonzero operator T such that $B T=\alpha T A$, since A is Quasi-similar to B. Then there exists two operators Y, Z which are injective with dense range such that $Y B T=\alpha Y T A$. So, $A Y T=\alpha Y T A$. By multiplying both sides by Y, there is $A(Y T Y)=$ $\alpha(Y T Y) B$, since $T \neq 0$ and Y is injective with dense range, there is $Y T Y \neq 0$. Then $\alpha \in \mathrm{E}(A, B)$. Therefore, $\mathrm{E}(A, B)=\mathrm{E}(B, A)$.
(3) Since $\lambda \neq 0$ and by definition of $E(A, B)$, there is $A X=\lambda X B$.

So, $(I-A) X=\lambda X(1 / \lambda I-B)$ and $\mathrm{E}(A, B)=\mathrm{E}(I-A, 1 / \lambda I-B)$.
Corollary (3.2): Suppose that $A, B \in \mathcal{B}(\mathcal{H})$. Then:
1- If $A \sim B$, then $\mathrm{S}(A, B)=S(A)=S(B)$ and $\mathrm{QS}(A, B)=Q S(A)=Q S(B)$.
2- If $A \approx B$, then $\mathrm{S}(A, B)=\mathrm{S}(B, A)$ and $\mathrm{QS}(A, B)=\mathrm{QS}(B, A)$.
Some properties for the bi-extended eigenvalues are given in the following proposition.
Proposition (3.3): Suppose that $A, B \in \mathcal{B}(\mathcal{H})$. Then:
1- If $\lambda \in \mathrm{E}(A, B)$, then $\lambda^{n} \in \mathrm{E}\left(A^{n}, B^{n}\right)$ for every positive integer number n; also
if $\lambda \in S(A, B)(Q S(A, B))$, then $\lambda^{n} \in S\left(A^{n}, B^{n}\right)\left(Q S\left(A^{n}, B^{n}\right)\right)$.
2- $S(B, A)^{-1}=S(A, B), Q S(B, A)^{-1}=Q S(A, B)$ and if A and B are an invertible operators, so
$S\left(B^{-1}, A^{-1}\right)=S(A, B)$ and $Q S\left(B^{-1}, A^{-1}\right)=Q S(A, B)$, then $S(B, A)^{-1}=$ $S\left(B^{-1}, A^{-1}\right), Q S(B, A)^{-1}=Q S\left(B^{-1}, A^{-1}\right)$.

Proof: (1) Let $\lambda \in \mathrm{E}(A, B)$, then there exists a nonzero operator T such that $A T=\lambda T B$. So, $A A T=\lambda A T B$, and $A^{2} T=\lambda^{2} T B^{2}$ in general $A^{n} T=$ $\lambda^{n} T B^{n}$ for every positive integer number n. Thus, $\lambda^{n} \in \mathrm{E}\left(A^{n}, B^{n}\right)$.
Using the same way, $\lambda \in \mathrm{S}(A, B)(Q S(A, B))$ can be proved. Then $\lambda^{n} \in$ $\mathrm{S}\left(A^{n}, B^{n}\right)\left(\mathrm{QS}\left(A^{n}, B^{n}\right)\right)$ for every positive integer number n.
(2) $S(B, A)^{-1}=S(A, B)$ will be proven and the other one can be proved by employing the same way. Suppose that $\lambda \in S(A, B)$, then there exists an invertible operator T such that $T^{-1} A T=\lambda B$. So, $1 / \lambda A=\left(T^{-1}\right)^{-1} B T^{-1}$ and $1 / \lambda \in S(B, A)$. Then $\lambda \in S(B, A)^{-1}$. Hence $S(A, B) \subseteq S(B, A)^{-1}$. So, the prove of $S(B, A)^{-1} \subseteq S(A, B)$ is Similar. Thus $S(B, A)^{-1}=S(A, B)$. If A and B are invertible operators, then $S\left(B^{-1}, A^{-1}\right)=S(A, B)$ can be proved.
Let $\lambda \in \mathrm{S}(A, B)$, then there exists an invertible operator T such that $T^{-1} A T=\lambda B$. So, $A T=\lambda T B$, since A and B are invertible, there exists $T B^{-1}=\lambda A T^{-1}, B^{-1}\left(T^{-1}\right)=\lambda\left(T^{-1}\right) A^{-1}$ and $\lambda \in S\left(B^{-1}, A^{-1}\right)$. Therefore, $S(A, B) \subseteq S\left(B^{-1}, A^{-1}\right)$ and $S\left(B^{-1}, A^{-1}\right) \subseteq S(A, B)$. Using the same way, $Q S\left(B^{-1}, A^{-1}\right)=Q S(A, B)$ can be proved. Similarly, the Similar $S(A, B)$ can be proved. Based on $S(B, A)^{-1}=S(A, B)$ and $S\left(B^{-1}, A^{-1}\right)=S(A, B)$, where A and B are an invertible operators, there exists $S(B, A)^{-1}=$ $S\left(B^{-1}, A^{-1}\right)$; also, when A and B are invertible operators, there exists $Q S(B, A)^{-1}=Q S\left(B^{-1}, A^{-1}\right)$.
Proposition (3.4): The operators $A, B, C, D, X \in \mathcal{B}(\mathcal{H})$, then:
1- $\widetilde{\mathrm{E}}_{\alpha}(A, B) \widetilde{\mathrm{E}}_{\beta}(B, C) \subset \widetilde{\mathrm{E}}_{\alpha \beta}(A, C)$. In particular, if $A=C$, then $\widetilde{\mathrm{E}}_{\alpha}(A, B) \widetilde{\mathrm{E}}_{\beta}(B, A) \subset \widetilde{\mathrm{E}}_{\alpha \beta}(A)$.
2- $\widetilde{\mathrm{E}}_{1}(A, B) \widetilde{\mathrm{E}}_{\alpha}(B, A) \widetilde{\mathrm{E}}_{1}(A, B) \subset \widetilde{\mathrm{E}}_{\alpha}(A, B)$.
3- If $X \in \mathrm{E}_{\alpha}(A, B) \cap \mathrm{E}_{\beta}(C, D)$, then $X \in \mathrm{E}_{\alpha \beta}(C A, D B) \cap \mathrm{E}_{\alpha \beta}(A C, B D)$.
Proof: (1) Suppose that $X \in \widetilde{\mathrm{E}}_{\alpha}(A, B)$ and $Y \in \widetilde{\mathrm{E}}_{\beta}(B, C)$, then $A X=\alpha X B$, $B Y=\beta Y C$. So, $A X Y=\alpha X B Y, A(X Y)=\alpha \beta(X Y) C$ and $X Y \in \widetilde{\mathrm{E}}_{\alpha \beta}(A, C)$. This is clear in certain case.
(2) Let $T \in \widetilde{\mathrm{E}}_{\alpha}(B, A)$ and $X, Y \in \widetilde{\mathrm{E}}_{1}(A, B)$, then $B T=\alpha T A, A X=X B$ and $A Y=Y A . \quad$ So, $\quad X B T Y=\alpha X T A Y, \quad A(X T Y)=\alpha(X T Y) B \quad$ and $\quad X T Y \in$ $\widetilde{\mathrm{E}}_{\alpha}(A, B)$. Thus, $\widetilde{\mathrm{E}}_{1}(A, B) \widetilde{\mathrm{E}}_{\alpha}(B, A) \widetilde{\mathrm{E}}_{1}(A, B) \subset \widetilde{\mathrm{E}}_{\alpha}(A, B)$.
(3) Since $X \in \mathrm{E}_{\alpha}(A, B)$ and $X \in \mathrm{E}_{\beta}(C, D)$, then $A X=\alpha X B$ and $C X=$ $\beta X D$. So, $A X D=\alpha X B D,(A C) X=\alpha \beta X(B D), X \in \mathrm{E}_{\alpha \beta}(A C, B D)$ and $C A X=\alpha C X B$. Therefore, $(C A) X=\alpha \beta X(D B)$ and $X \in \mathrm{E}_{\alpha \beta}(C A, D B)$.
Corollary (3.5): The operators $A, B, C, D, X \in \mathcal{B}(\mathcal{H})$, then:
1- $\mathrm{S}_{\alpha}(A, B) \widetilde{\mathrm{E}}_{\beta}(B, C) \subset \widetilde{\mathrm{E}}_{\alpha \beta}(A, C)$ and $\mathrm{QS}_{\alpha}(A, B) \widetilde{\mathrm{E}}_{\beta}(B, C) \subset \widetilde{\mathrm{E}}_{\alpha \beta}(A, C)$. In particular, if $A=C$, then $\mathrm{S}_{\alpha}(A, B) \widetilde{\mathrm{E}}_{\beta}(B, A) \subset \widetilde{\mathrm{E}}_{\alpha \beta}(A) \quad$ and $Q \mathrm{~S}_{\beta}(A, B) \widetilde{\mathrm{E}}_{\alpha}(B, A) \subset \widetilde{\mathrm{E}}_{\alpha \beta}(A)$.
2- $\mathrm{S}_{\alpha}(A, B) \mathrm{S}_{\beta}(B, C) \subset \mathrm{S}_{\alpha \beta}(A, C)$ and $\mathrm{S}_{\alpha}(A, B) Q \mathrm{~S}_{\beta}(B, C) \subset \mathrm{QS}_{\alpha \beta}(A, C)$.
3- $S_{1}(A, B) \mathrm{S}_{\alpha}(B, A) \mathrm{S}_{1}(A, B) \subset \mathrm{S}_{\alpha}(A, B)$
and
$\mathrm{QS}_{1}(A, B) \mathrm{QS}_{\alpha}(B, A) \mathrm{QS}_{1}(A, B) \subset \mathrm{QS}_{\alpha}(A, B)$.
Proof: by employing the same way of proposition (3.4).
Theorem (3.6): Suppose that $A \approx \tilde{A}$ and $B \approx \tilde{B}$, then $\mathrm{E}(A, B)=\mathrm{E}(\tilde{A}, \tilde{B})$.
Proof: Suppose that $A \approx \tilde{A}$ and $B \approx \tilde{B}$, then there exists S, T, Z, W that are injective with dense range such that $A S=S \tilde{A}, T A=\tilde{A} T, B Z=Z \tilde{B}$, $W B=\tilde{B} W$. Now, let $\lambda \in \mathrm{E}(A, B)$, then there exists a nonzero operator X, such that $A X=\lambda X B$. So, $T A X Z=\lambda T X B Z$ and $\tilde{A}(T X Z)=\lambda(T X Z) \tilde{B}$.
Since $X \neq 0$ and T, Z are injective with dense range, then $T X Z \neq 0$. So, $\lambda \in \mathrm{E}(\tilde{A}, \tilde{B})$ and $\mathrm{E}(A, B) \subseteq \mathrm{E}(\tilde{A}, \tilde{B})$.
Conversely, let $\lambda \in \mathrm{E}(\tilde{A}, \tilde{B})$, then there exists a nonzero operator Y, such that $\tilde{A} Y=\lambda Y \tilde{B}$. So, $S \tilde{A} Y W=\lambda S Y \tilde{B} W$ and $A(S Y W)=\lambda(S Y W) B$. Since $Y \neq 0$ and S, W are injective with dense range. Hence, $S Y W \neq 0$, that is, $\lambda \in \mathrm{E}(A, B)$. Therefore, $\mathrm{E}(\tilde{A}, \tilde{B}) \subseteq \mathrm{E}(A, B)$ and $\mathrm{E}(\tilde{A}, \tilde{B})=\mathrm{E}(A, B)$.
Proposition (3.7) [5]: Assume that A and B are two self adjoint operators, where A is injective; if $\lambda \in \mathrm{E}(A, B)$, then $\lambda \in \mathbb{R}$.
Lemma (3.8): Suppose that A is invertible operator and B is nilpotent operator. Then the equation $A X=\lambda X B$ have only the zero solution.
Proof: Suppose B is nilpotent, then there exists a positive integer number n such that $B^{n}=0$. Then $A X=\lambda X B$. So, $A^{2} X=\lambda^{2} X B^{2}$. Hence, $A^{n} X=$ $\lambda^{\mathrm{n}} X B^{n}$ for each n , since $B^{n}=0$, there is $A^{n} X=0$, and A is invertible, which implies that $X=0$.

References:

[1] A. Biswas, A. Lambert and S. Petrovic. Extended eigenvalues and the Volterra operator. Glasg.Math.J.44;521-534. 2002.
[2] A. Biswas, S. Petrovic. On extended eigenvalues of operators. Integral Equations and Operator Theory.55;233-248. 2006.
[3] A.Lambert. Hyperinvariant subspaces and extended eigenvalues. New York.J.Math.10; 83-88. 2004.
[4] C.C.Cowen. Commutates and the operator equation $A X=\lambda X A$. Pacific J.Math.80;337-340. 1979.
[5] J.Yang, Hong-ke Du. A note on commutatively up to a factor of bounded operators. proc.Am.Math.Soc.132; 1713-1720.2004.
[6] I.Sititi, Sammy W. Musundi, Bernard M. Nzambi, Kikete W. Dennis. Note on quasi-similarity of operators in Hilbert space. International Journal of Mathematical Archive-6(7); 49-54.2015.
[7] L. K. Shaakir and A. A. Hijab. Similar and Quasi-similar On Extended Eigenvalues and Extended Eigenvectors. Tikrit J.PSW.1(1);183-194.2013.

