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Abstract 

  The purpose of the research is to introduce a new kinds of sets called (𝒜-In and 𝒜-α-In) sets also 

(B-In and B-α-In ) sets and another types of sets in Ideal nanotopological space and study some of 

these sets properties also we characterize the relations between them and the related properties. 
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 (Ʋ, 𝒩, I)) ضاءات النانوتبولوجية المثاليةفاصناف جديدة من المجموعات في ال
 

 الخلاصة
 (𝒜-In and 𝒜-α-In)هو تقديم أنواع جديدة من المجموعات تسمى مجموعات  البحث من هذا الغرض         

بعض خواص هذه  دراسةو  ة المثالي ةولوجينانوتبوأنواع أخرى من المجموعات في الفضاء ال  ( B-In and B-α-In)ومجموعات
 العلاقات بينها وبين الخصائص المتعلقة بها. المجموعات وتمييز

 

 

Introduction and Preliminaries 

In topological space (𝒳, 𝒯) [1] the 𝐼 Ideal is set not equal empty that subsets of 𝒳 which satisfy 

the terms below; 

I. 𝒦 ∈ 𝐼 and  ℋ⊂ 𝒦 implying that  ℋ ∈ 𝐼 and 

II. 𝒦 ∈ 𝐼 and ℋ ∈ 𝐼 implying that 𝒦 ∪ ℋ ∈ 𝐼. 

In a space of  topology (𝒳, 𝒯) with Ideal. p (𝒳) is the family of all subsets of 𝒳, the set operator 

(.)⋆:p (𝒳) → p (𝒳), referred to as a local function of 𝒦 in relation to 𝒯 and 𝐼 is written as ; for 𝒦 ⊂ 

𝒳 , 𝒦 *
( I, 𝒯) ={ ϰ ∈ 𝒳 : Ʋ ∩ 𝒦 not belong to 𝐼 for all Ʋ ∈ 𝒯 (ϰ) } where 𝒯(ϰ) ={U∈ 𝒯: ϰ ∈ Ʋ}[2]. 

The operator for closure established by 𝖢L⋆(.) = 𝒦 ∪ 𝒦 *
, [3] is a Kuratowski the operator for 

closure which generates a topology 𝒯⋆(I ,𝒯) is written as *-topology. The Ideal on 𝒳 with 

topological space is topological space with Ideal or Ideal space being signified (𝒳, 𝒯, 𝐼). We're able 

to compose 𝒦*
for 𝒦⋆( I, 𝒯) and 𝒯⋆ for 𝒯⋆( I, 𝒯). [4, 5] Parimala et al. Some Ideas were added in the 

notions of Ideal nanotopological spaces. [4]A nanotopological space (Ʋ, 𝒩) with the Ideal I on Ʋ 
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is the Ideal nanotopological space and is denoted by (Ʋ, 𝒩, 𝐼). Gn (ϰ) ={ Gn | ϰ ∈ Gn, Gn ∈ 𝒩 } 

,denotes [4] the family of nanoopen sets containing ϰ.  

       The purpose of the research is to introduce a new kinds of sets called (𝒜-In and 𝒜-α-In) sets 

also (B-In and B-α-In ) sets and another types of sets in Ideal nanotopological space and study some 

of these sets properties also we characterize the relations between them and the related properties.  

Definition: 1.1. [6] The finite set Ʋ be a not-empty of objects (the universe) & the equivalence 

relation ℛ on Ʋ is the relation of Indiscernibility. Elements belonging to the same equivalence class 

are said to be indiscernible from each other. Space of approximation denoted by (Ʋ, ℛ). 

 Let 𝒳 ⊆ Ʋ.  

(i) 𝐿ℛ(𝒳) =𝑆𝑥∈Ʋ{ℛ(ϰ) ; ℛ (ϰ) ⊆ 𝒳}.  

(ii) Ʋℛ (𝒳) = 𝑆𝑥∈Ʋ {ℛ (ϰ) ; ℛ (ϰ) ∩ 𝒳 ≠ ∅}. 

(iii) 𝖡ℛ (𝒳) = Ʋℛ (𝒳) – 𝐿ℛ (𝒳). 

Definition:  1.2. [6] The universe Ʋ for ℛ be a relationship of equivalence on Ʋ and τℛ (𝒳) = 

{Ʋ,∅, Lℛ (𝒳), Ʋℛ (𝒳), Bℛ (𝒳)} where 𝒳 ⊆ Ʋ, τℛ (𝒳) complies with The axioms below are:  

(i)  Ʋ and  ∅ ∈ τℛ (𝒳).  

(ii)  The (∪) of components of any τℛ (𝒳) sub collection is in τℛ (𝒳). 

(iii)  The (∩) of components for finite τℛ (𝒳) sub collection is in τℛ (𝒳). 

 

That's also , τℛ (𝒳) creates on Ʋ a topology called as the nanotopology on Ʋ according to the 𝒳. 

We say (Ʋ, τℛ(𝒳)) as the space of nanotopology. The τℛ (𝒳) components are named out as 

nanoopen . A set 𝒦 is closed in the form nano and complement is open in the form nano. 

 

Definition: 1.3. [6] If (Ʋ, τℛ (𝒳))  is a nanotopology space according to the 𝒳 , 𝒳 ⊆ Ʋ and if 𝒦 ⊆ 

Ʋ, The nanointerior of 𝒦 is then known as the unions ∪𝓃of all nanoopen subsets in 𝒦, and 𝓃ἱnt 

(𝒦) denotes it. The biggest open subset of 𝒦 for nano is 𝓃ἱnt (𝒦). The nanoclosure of 𝒦 is known 

as the intersections ∩𝓃 of all nano closed set containing 𝒦. We denote a nanotopological space by 

(Ʋ, 𝒩) where 𝒩= τℛ (𝒳). 

Definition: 1.4. If 𝒦 ⊆ Ʋ , the space (Ʋ, 𝒩) is named 

1) nanoα- open  [6]  𝒦 ⊆ 𝓃ἱnt (𝓃ϹL(𝓃ἱnt (𝒦))). 

2) nanosemi- open  [6]  𝒦 ⊆ 𝓃ϹL(𝓃ἱnt (𝒦)). 

3) nanopre- open  [6]  𝒦 ⊆ 𝓃ἱnt (𝓃ϹL(𝒦)). 

4) nanoregular open [7]   = 𝓃ἱnt (𝓃ϹL(𝒦)) 

Their respective closed sets are considered the complements of the above sets. 

Definition: 1.5. [4] Let (Ʋ, 𝒩, I) be a space. Let (. )𝑛
∗  be the operator for set from𝑝 ( Ʋ) to 𝑝( Ʋ) (𝑝( 

Ʋ) that is the collection of all items in Ʋ). For a subset 𝒦 ⊆ Ʋ, 𝒦𝑛
∗  (I, 𝒩) ={ ϰ ∈ Ʋ: Gn ∩ 𝒦 not 
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belong to I, ∀ Gn∈ Gn (ϰ)} is named out as nanoopen local function of 𝒦 with I and 𝒩. We are 

clearly going to write  𝒦𝑛
∗ for 𝒦𝑛

∗ (I, 𝒩). 

 

Theorem: 1.6. [4] Let (Ʋ, 𝒩, I) be a space and 𝒦 and ℋ be subsets of Ʋ. Then 

1. 𝒦 ⊆ ℋ⇒ 𝒦𝑛
∗ ⊆ ℋ𝑛

∗, 

2.  𝒦𝑛
∗= 𝓃Ϲl(𝒦𝑛

∗) ⊆ 𝓃Ϲl(𝒦) ( 𝒦𝑛
∗ is a 𝓃closed subset of 𝓃Ϲl(𝒦)), 

3. (𝒦𝑛
∗)𝑛

∗   ⊆  𝒦𝑛
∗, 

4. ( 𝒦 ∪  ℋ)𝑛
∗  = 𝒦𝑛

∗ ∪ ℋ𝑛
∗, 

5. V∈ 𝒩 ⇒ V ∩ 𝒦𝑛
∗  = V ∩(V ∩  𝒦)𝑛

∗  ⊆ (V ∩  𝒦)𝑛
∗ , 

6. J ∈ I⇒ ( 𝒦 ∪ J)𝑛
∗  = 𝒦𝑛

∗ = ( 𝒦 − J)𝑛
∗ . 

Theorem: 1.7. [4] Let (Ʋ, 𝒩, I) be a space with an Ideal I and 𝒦 ⊆  𝒦𝑛
∗, then  𝒦𝑛

∗ =  CL ( 𝒦𝑛
∗) = 

𝓃CL(𝒦). 

Definition: 1.8. [4] Let (Ʋ, 𝒩, I) be a space. The operator 𝓃ϹL
*
 named  a nano

 *
 -closure is 

characterized by 𝓃ϹL
*
(𝒦) = 𝒦 ∪ 𝒦𝓃

∗   when  𝒦 ⊆ Ʋ. It can be easily observed that 𝓃ϹL
*
 (𝒦) ⊆ 

𝓃ϹL(𝒦). 

Theorem: 1.9. [5] In a space (Ʋ, 𝒩, I), if 𝒦 and ℋ are subsets of Ʋ, then the following results are 

true for the set operator 𝓃ϹL
*
. 

1. 𝒦 ⊆ 𝓃ϹL
*
 (𝒦), 

2. 𝓃ϹL
*
 (φ) =φ and 𝓃ϹL

*
 (Ʋ) = Ʋ, 

3. If 𝒦 ⊂ ℋ, then 𝓃ϹL
*
 (𝒦) ⊆ 𝓃ϹL

*
 (ℋ), 

4. 𝓃ϹL
*
 (𝒦) ∪ 𝓃ϹL

*
 (ℋ) = 𝓃ϹL

*
 (𝒦 ∪ ℋ), 

5. 𝓃ϹL
*
 (𝓃ϹL

*
 (𝒦)) = 𝓃ϹL

*
 (𝒦). 

Definition: 1.10. [5] If 𝒦 ⊆ Ʋ , the space (Ʋ, 𝒩, 𝐼)  is named to be nano I-open (briefly, 𝐼𝓃-open) 

if 𝒦 ⊆ 𝓃ἱnt(𝒦𝓃
∗ ). 

Definition: 1.11. [9] If 𝒦 ⊆ Ʋ , the space (Ʋ, 𝒩, I)  is named: 

1. nanoα-I -open (briefly α- I𝓃  -open) if 𝒦 ⊂ 𝓃ἱnt(𝓃𝖢L⋆( 𝓃ἱnt(𝒦))), α-𝐼𝓃-closed is  complement for  

α- I𝓃  -open set is. 

2. nanosemi- I -open (briefly semi-I𝓃-open) if 𝒦 ⊂ 𝓃𝖢L⋆(𝓃ἱnt(𝒦)), semi-𝐼𝓃 - closed is complement 

for  a semi-𝐼𝓃 -open set. 

3. nanopre- I -open (briefly pre-𝐼𝓃 -open) if 𝒦 ⊂ 𝓃ἱnt(𝓃𝖢L⋆( 𝒦)), pre-𝐼𝓃 - closed is  

complement for  pre-𝐼𝓃 -open set.  

4. nanosemi⋆- I -open (briefly semi⋆-𝐼𝓃 -open) set if 𝒦 ⊂ 𝓃𝖢L (𝓃ἱnt⋆ (𝒦)). A subset 𝒦 is said to be 

a semi⋆- 𝐼𝓃  - closed set (𝓃ἱnt(𝓃𝖢L⋆( 𝒦))) ⊂ 𝒦 if its complement is a semi⋆ -𝐼𝓃- open set. 

Definition: 1.12.[10] If 𝒦 ⊆ Ʋ , the space (Ʋ, 𝒩, 𝐼)   is named nano𝒯-I set (briefly, 𝒯-𝐼𝓃 set) if 

𝓃ἱnt (𝒦) = 𝓃ἱnt (𝓃𝖢L⋆(𝒦)), 

Theorem: 1.13. [9]In a space (Ʋ, 𝒩,I), for a subset 𝒦 is 𝓃 -open ⇒ 𝒦 is α- 𝐼𝓃-open. 

2- (𝒜-In and 𝒜-α-In) sets  

Definition: 2.1.  If 𝒦 ⊆ Ʋ , the Ideal nanotopological space (Ʋ, 𝒩, I) is named:  

(a) an 𝒜-𝐼𝓃 set  if  𝒦 = 𝒰 ∩ 𝒱 , In which 𝒰 is 𝓃 -open  and 𝓃𝖢L⋆(𝓃ἱnt (𝒱 )) = 𝒱.  

 (b) an 𝒜-α-𝐼𝓃  set  if  𝒦 = 𝒰 ∩ 𝒱 , In which 𝒰 is α-𝐼𝓃 -open  and 𝓃𝖢L⋆(𝓃ἱnt (𝒱)) = 𝒱. 
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Theorem: 2.2.  Every 𝒜-𝐼𝓃 set is 𝒜-α-𝐼𝓃 set. 

Proof: It follows directly from Theorem 1.13 (for a subset 𝒦 is 𝓃 -open ⇒ 𝒦 is α- 𝐼𝓃 -open). 

The converse of Theorem (2.2) is not true as shown in the following Example. 

Example: 2.3. Let Ʋ ={ ϲ1 , ϲ2 , ϲ3} with Ʋ/R={{ϲ1 , ϲ3},{ϲ2}} and 𝒳 ={ϲ3},Then  𝒩 

={X,Ø,{ϲ1},{ϲ1 , ϲ3}} and I={Ø,{ϲ2},{ϲ2 , ϲ3}},Then A={ϲ1 , ϲ2} is 𝒜-α-In set but is it not 𝒜-𝐼𝓃 set. 

Lemma: 2.4.  Let (Ʋ, 𝒩, I)   be an Ideal nanotopological space and 𝒦 ⊆ Ʋ. If is n-open, then 𝒰 ∩ 

𝓃𝖢L⋆ (𝒦) ⊂ 𝓃𝖢L⋆ (𝒰 ∩ 𝒦).  

Proof: Let 𝒦 ⊆ Ʋ and 𝒰 is 𝓃 -open, then 𝒰 ∩ 𝓃𝖢L⋆ (𝒦) = 𝒰 ∩ (𝒦 ∪ 𝒦 ∗) = (𝒰 ∩ 𝒦) ∪ (𝒰 ∩ 𝒦 ∗) 

⊂ (𝒰 ∩ 𝒦) ∪ (𝒰 ∩ 𝒦)∗ = 𝓃𝖢L⋆ ( 𝒰 ∩ 𝒦). 

Proposition: 2.5. If 𝒦 ⊆ Ʋ , Ideal nanotopological space (Ʋ, 𝒩, I)   is  α-𝐼𝓃-open and ℋ ⊆ Ʋ is 

semi-𝐼𝓃-open  ⇒ 𝒦 ∩ ℋ is semi-𝐼𝓃 -open.  

Proof: Thru the presumption   𝒦 ⊂ 𝓃ἱnt (𝓃𝖢L⋆(𝓃ἱnt (𝒦))) 

                            and  ℋ ⊂ 𝓃𝖢L⋆(𝓃ἱnt (ℋ)).  

The operation of Lemma 2.4 Therefore, 

                                     𝒦 ∩ ℋ ⊂ 𝓃ἱnt (𝓃𝖢L⋆ (𝓃ἱnt (𝒦))) ∩ 𝓃𝖢L⋆ (𝓃ἱnt (ℋ))  

                                                         ⊂ 𝓃𝖢L⋆ (𝓃ἱnt (𝓃𝖢L⋆ (𝓃ἱnt (𝒦))) ∩ 𝓃ἱnt (ℋ))  

                                                         ⊂ 𝓃𝖢L⋆ (𝓃𝖢L⋆ (𝓃ἱnt (𝒦)  ∩ 𝓃ἱnt (ℋ)))  

                                                         ⊂ 𝓃𝖢L⋆ (𝓃𝖢L⋆ (𝓃ἱnt (𝒦) ∩ 𝓃ἱnt (ℋ))) 

                                                  ⊂ 𝓃𝖢L⋆ (𝓃ἱnt (𝒦 ∩ ℋ)).  

This demonstrates that 𝒦 ∩ ℋ is semi-𝐼𝓃- open in (Ʋ, 𝒩, I). 

Theorem: 2.6.  In Ideal nanotopological space (Ʋ, 𝒩, I), every 𝒜-α-𝐼𝓃set is semi-𝐼𝓃 -open.  

Proof: Let 𝒦 be a 𝒜-α-𝐼𝓃set in (Ʋ, 𝒩, I) by definition( 2.1),  𝒦 = 𝒰 ∩ 𝒱   , where 𝒰 is  α -𝐼𝓃-open 

and 𝓃𝖢L⋆( 𝓃ἱnt (𝒱)) = 𝒱. Consequently, 𝒱 is semi-𝐼𝓃-open. By proposition(2.5),  𝒦 = 𝒰 ∩ 𝒱 is 

semi -𝐼𝓃-open. 

Definition: 2.7.  If 𝒦 ⊆ Ʋ ,  Ideal nanotopological space (Ʋ, 𝒩, I) is named 

an 𝒞-𝐼𝓃 set if 𝒦 = 𝒰 ∩ 𝒱 , where 𝒰 is 𝓃 -open and 𝓃ἱnt (𝓃𝖢L⋆(𝓃ἱnt (𝒱 ))) = 𝓃ἱnt(𝒱). 

     

Theorem: 2.8.  Every 𝒜-𝐼𝓃  set is 𝒞-𝐼𝓃 set . 

As seen in the following, the converse of Theorem (2.8) is not true; 

Example: 2.9.  B={ϲ2, ϲ3} in example 2.3 is 𝒞-𝐼𝓃 set but not 𝒜-𝐼𝓃 set.  

Theorem: 2.10.  Let (Ʋ, 𝒩, I) be an Ideal nanotopological space and 𝒦 ⊂ Ʋ. The 

following conditions are equivalent: 

(a)  𝒦 is   𝓃-open. 

(b)   𝒦 is  α-𝐼𝓃- open  and  𝒜-𝐼𝓃 set. 

Proof: (a)  → (b) Since every 𝓃 -open set is α-𝐼𝓃-open and 𝒦 = 𝒦 ∩ Ʋ, where 𝒦 is 𝓃 -open set and   

𝓃𝖢L⋆ (𝓃ἱnt (Ʋ)) = Ʋ  



 ثانيالعدد ال ......................2021......................  كلية التربيةمجلة   - الجامعة المستنصرية
 

39 

(b) → (a)  𝒦 is  α-𝐼𝓃-open and  𝒜-𝐼𝓃 set. Since every 𝒜-𝐼𝓃 set is 𝒞 -𝐼𝓃 set. This mean 𝒦 is 𝒞-𝐼𝓃 set. 

Therefore, it follows that 𝒦 is 𝓃 -open. 

 

Definition: 2.11.  If 𝒦 ⊆ Ʋ ,  Ideal nanotopological space (Ʋ, 𝒩, I) is named  nano𝒯-α-I set 

(briefly, 𝒯-α-𝐼𝓃 set) if 𝓃ἱnt (𝒦) = 𝓃ἱnt (𝓃𝖢L⋆(𝓃ἱnt (𝒦))).  

Example: 2.12.  Let Ʋ = { ℯ1 , ℯ2 , ℯ3 , ℯ4} with Ʋ /R = {{ ℯ2} , { ℯ4}, { ℯ1 , ℯ3}} and  𝒳 =  {ℯ3, ℯ4}. 

Then 𝒩 = {φ, {ℯ4} , {ℯ1, ℯ3} , {ℯ1 , ℯ3 , ℯ4}, Ʋ}. Let the Ideal be I = {φ, {ℯ3}}. Then the set 𝒦 = 

{ℯ2} is 𝒯-𝐼𝓃 set and ℋ = {ℯ4} is 𝒯-α-𝐼𝓃 set. 

Proposition: 2.13.  If 𝒦 and ℋ are 𝒯-α-𝐼𝓃 sets of a space (Ʋ, 𝒩, I), then 𝒦 ∩ ℋ is 𝒯-α-𝐼𝓃 set.  

Proof: Let 𝒦 and ℋ be 𝒯-α-𝐼𝓃 sets. We have got then 

 𝓃ἱnt (𝒦 ∩ ℋ) ⊂ 𝓃ἱnt (𝓃𝖢L⋆ (𝓃ἱnt (𝒦 ∩ ℋ)))  

                            ⊂ 𝓃ἱnt [𝓃𝖢L⋆ (𝓃ἱnt (𝒦)) ∩ 𝓃𝖢L⋆ (𝓃ἱnt (ℋ))]  

                         = 𝓃ἱnt (𝓃𝖢L⋆ (𝓃ἱnt (𝒦))) ∩ 𝓃ἱnt (𝓃𝖢L⋆ ( ἱnt (ℋ)))  

                         = 𝓃ἱnt (𝒦) ∩ 𝓃ἱnt (ℋ) = 𝓃ἱnt (𝒦 ∩ ℋ).  

Then 𝓃ἱnt (𝒦 ∩ ℋ) = 𝓃ἱnt (𝓃𝖢L⋆(𝓃ἱnt (𝒦 ∩ ℋ))) ⇒ 𝒦 ∩ ℋ is a 𝒯-α-𝐼𝓃 set. 

- (B-In and B-α-In ) sets 3  

Definition: 3.1.  If 𝒦 ⊆ Ʋ, Ideal nanotopological space (Ʋ, 𝒩, I) is named 

1. nano B-I set (briefly, B-𝐼𝓃  set) if 𝒦 = 𝒰 ∩ 𝒱, In which 𝒰 is 𝓃 -open and 𝒱 is 𝒯-𝐼𝓃  set,  

2. nano B-α-I set (briefly, B-α-𝐼𝓃 set) if 𝒦 = 𝒰 ∩ 𝒱, in which 𝒰 is 𝓃 -open and 𝒱 is 𝒯-α-𝐼𝓃 set. 

Example: 3.2.  Let Ʋ = {ℯ1 , ℯ2 , ℯ3 , ℯ4} with Ʋ /R = {{ℯ2}, {ℯ4}, {ℯ1, ℯ3}} and         𝒳 = {ℯ3 , ℯ4}. 

Then 𝒩 = {φ, {ℯ4}, {ℯ1 , ℯ3} , {ℯ1, ℯ3, ℯ4}, Ʋ}. Let the Ideal be              Ӏ = {φ, {ℯ3}}.Then the set C 

= {ℯ2, ℯ3} is B-In set and D = {ℯ1, ℯ3} is B-α-𝐼𝓃 set 

Remark: 3.3.  In a space (U, 𝒩, Ӏ)  

each 𝓃 -open set is B-𝐼𝓃 set and each 𝒯-𝐼𝓃 set is B-𝐼𝓃-set. 

The converse of remark (3.3) is not true as shown in the following; 

Example: 3.4.  In example (4.2 ) 𝒦 = {ℯ2} is B-In set but not 𝓃 -open set and ℋ = {ℯ1, ℯ3, ℯ4} is B-

In set but not 𝒯-𝐼𝓃 set 

Theorem: 3.5.  For a subset 𝒦 of a space (Ʋ, 𝒩, I), the set 𝒦 is 𝓃 -open if and only if 𝒦 is pre-𝐼𝓃-

open and B-𝐼𝓃 set. 

Proof: (1) ⇨ (2): Let 𝒦 be 𝓃 -open. Then 𝒦 = 𝓃ἱnt (𝒦) ⊂ 𝓃ἱnt (𝓃𝖢L⋆ (𝒦)) and 𝒦 is pre-In-open. 

This mean 𝒦 is B-𝐼𝓃 set by (3.3) . 

(2) ⇨ (1):  let 𝒦 is B-𝐼𝓃 set. So 𝒦 = 𝒰 ∩ 𝒱 where 𝒰 is 𝓃 -open and 𝓃ἱnt (𝒱) = 𝓃ἱnt (𝓃𝖢L⋆ (𝒱)) 

Then 𝒦 ⊂ 𝒰 = 𝓃ἱnt (𝒰). Also, 𝒦 is pre-𝐼𝓃- open implies 𝒦 ⊂ 𝓃ἱnt (𝓃𝖢L⋆ (𝒦)) ⊂ 𝓃ἱnt (𝓃𝖢L⋆(𝒱)) = 

𝓃ἱnt (𝒱) by assumption. Thus 𝒦 ⊂ 𝓃ἱnt (𝒰) ∩ 𝓃ἱnt (𝒱) = 𝓃ἱnt (𝒰 ∩ 𝒱) = 𝓃ἱnt (𝒦) ⇒ 𝒦 is 𝓃 -

open.  
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Remark: 3.6.  In a space (Ʋ, 𝒩, I) 

 each 𝓃 -open set is B-α-𝐼𝓃 set  also each 𝒯-α-𝐼𝓃 set is B-α-𝐼𝓃 set. 

The converse of remark (3.6) is not true as shown in the following; 

Example: 3.7. In example (3.2) the set   = {ℯ1} is B-α-𝐼𝓃 set but  not 𝓃 -open set and the set ℋ = 

{ℯ1, ℯ3, ℯ4} is B-α-𝐼𝓃 set but not Ƭ-α-𝐼𝓃 set. 

Theorem: 3.8.  For a subset 𝒦 of a space (Ʋ, 𝒩, I), 𝒦 is 𝓃 – open iff   𝒦 is  α-𝐼𝓃 - open and a B-α-

𝐼𝓃 set. 

 Proof: (1) ⇨ (2): Let 𝒦 be 𝓃 -open. 𝒦 = 𝓃ἱnt (𝒦) ⊂ 𝓃𝖢L⋆ (𝓃ἱnt (𝒦)) and 𝒦 =  ἱnt (𝒦)⊂ 𝓃ἱnt 

(𝓃𝖢L⋆(𝓃ἱnt (𝒦))) Therefore 𝒦 is α-𝐼𝓃- open. by remark(3.6)  is  B-α-𝐼𝓃 set.  

(2) ⇨ (1): Given 𝒦 is a B-α-𝐼𝓃 set. So 𝒦 = 𝒰 ∩ 𝒱 where 𝒰 is 𝓃 -open and 𝓃ἱnt (𝒱) = 𝓃ἱnt (𝓃𝖢L⋆ 

(𝓃ἱnt (𝒱))) Then 𝒦 ⊂ 𝒰 = 𝓃ἱnt (𝒰). Also 𝒦 is α-𝐼𝓃- open implies 𝒦 ⊂𝓃ἱnt (𝓃𝖢L⋆(𝓃ἱnt (𝒦))) ⊂ 

𝓃ἱnt (𝓃𝖢L⋆(𝓃ἱnt (𝒱))) = 𝓃ἱnt (𝒱) by assumption. Thus 𝒦 ⊂ 𝓃ἱnt (𝒰) ∩ 𝓃ἱnt (𝒱) = 𝓃ἱnt (𝒰 ∩ 𝒱) = 

𝓃ἱnt (𝒦) and 𝒦 is 𝓃 -open. 

Definition: 3.9.  If 𝒦 ⊆ Ʋ, the Ideal nanotopological space (Ʋ, 𝒩, I) is named   

semi pre⋆-𝐼𝓃 - closed set (𝓃ἱnt (𝓃𝖢L⋆(𝓃ἱnt (𝒦))) ⊂ 𝒦 if its complement is a semi pre
 ⋆ - 𝐼𝓃-open 

set. 

Every semi⋆- 𝐼𝓃- closed set is a semi pre⋆-𝐼𝓃- closed. Theorem: 3.10.  

Proof: It follows directly from definition( 3.9  and 1.11(4)) 

But the following example illustrates that the opposite is not true. 

Example: 3.11.  Consider the Ideal nanotopological space (Ʋ,𝒩,I) where Ʋ = {ℯ1 , ℯ2 , ℯ3 , ℯ4 }, 

with Ʋ/R = {{ℯ2}, {ℯ4}, {ℯ1, ℯ3}} and X = { ℯ3, ℯ4}, Then 𝒩 = {∅, { ℯ4 }, { ℯ1 , ℯ3 }, {ℯ1 , ℯ3 , ℯ4 }, 

Ʋ } and I = {∅, {ℯ3}, {ℯ4}, {ℯ3, ℯ4}}. If 𝒦 = {ℯ1}, then 𝓃ἱnt (𝓃𝖢L⋆(𝓃ἱnt (𝒦))) = 𝓃ἱnt (𝓃𝖢L⋆ (∅)) = 

∅ ⊂ 𝒦 and 𝒦 is semi pre⋆-𝐼𝓃-closed. Since 𝓃ἱnt (𝓃𝖢L⋆(𝒦)) = 𝓃ἱnt (𝓃𝖢L⋆ ({ℯ1})) = 𝓃ἱnt ({ℯ1, ℯ2, 

ℯ3}) = {ℯ1, ℯ3} ⊈ {ℯ1}, 𝒦 is not semi⋆-𝐼𝓃- closed. 

Theorem: 3.12.  If 𝒦 ⊆ Ʋ,  Ideal nanotopological space (Ʋ, 𝒩, I) is  semi pre⋆ -𝐼𝓃- closed. If 𝒦 is 

semi-𝐼𝓃- open, then 𝒦 is semi⋆-𝐼𝓃- closed.  

Proof: If 𝒦 is semi- 𝐼𝓃 - open, then 𝒦 ⊂ 𝓃𝖢L⋆ (𝓃ἱnt (𝒦)) and so 𝓃𝖢L⋆ (𝒦) ⊂ 𝓃𝖢L⋆ (𝓃ἱnt (𝒦)). 

Now 𝓃ἱnt (𝓃𝖢L⋆ (𝒦)) ⊂ 𝓃ἱnt (𝓃𝖢L⋆(𝓃ἱnt (𝒦))) ⊂ 𝒦 and so 𝒦 is semi⋆-𝐼𝓃 - closed. 

Theorem: 3.13.  If 𝒦 ⊆ Ʋ ,  Ideal nanotopological space (Ʋ, 𝒩, I). Then both of these are equal 

 (1)   𝒦 is a 𝒯-𝐼𝓃 set.  

 (2)   𝒦 is a semi pre⋆- 𝐼𝓃 -closed and B-In set.  

Proof: (2) ⬄ (1). Suppose 𝒦 is a semi pre⋆-𝐼𝓃-closed and B-𝐼𝓃 set.  

Then 𝒦 = 𝒰 ∩ 𝒱 where 𝒰 is 𝓃 -open and 𝒱 is a 𝒯-𝐼𝓃 set.  ⬄ 

⬄ Now   𝓃ἱnt (𝓃𝖢L⋆ (𝒦)) = 𝓃ἱnt (𝓃𝖢L⋆ (𝒰 ∩ 𝒱))   

             ⊂ 𝓃ἱnt (𝓃𝖢L⋆(𝒰) ∩ 𝓃𝖢L⋆(𝒱)) = 𝓃ἱnt (𝓃𝖢L⋆(𝒰)) ∩ 𝓃ἱnt (𝖢L⋆(𝒱))                    𝓃ἱnt (𝓃𝖢L⋆ 

(𝒰)) ∩ 𝓃ἱnt (𝒱) = 𝓃ἱnt (𝓃𝖢L⋆ 
(𝒰) ∩ 𝓃ἱnt (𝒱)) =                                       

⊂ 𝓃ἱnt (𝓃𝖢L⋆ (𝒰) ∩ 𝓃ἱnt (𝒱)) = 𝓃ἱnt (𝓃𝖢L⋆ (𝓃ἱnt (𝒰 ∩ 𝒱)))                                 
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= 𝓃ἱnt (𝓃𝖢L⋆ (𝓃ἱnt (𝒦))) ⊂ 𝒦                                 

⬄ So       𝓃ἱnt (𝓃𝖢L⋆ (𝒦))⊂ 𝓃ἱnt (𝒦).  

But   𝓃ἱnt (𝒦) ⊂ 𝓃ἱnt (𝓃𝖢L⋆(𝒦))  

So 𝓃ἱnt (𝒦) = 𝓃ἱnt (𝓃𝖢L⋆(𝒦))    ⬄  

⬄which demonstrates that 𝒦 is a 𝒯-𝐼𝓃 set. 

Theorem: 3.14.  If 𝒦 ⊆ Ʋ,  Ideal nanotopological space (Ʋ, 𝒩, I)  is  semi⋆-𝐼𝓃-open ⇔  𝓃𝖢L (𝒦) 

= 𝓃𝖢L (𝓃ἱnt
 ⋆(𝒦)).  

Proof: If 𝒦 is semi⋆-𝐼𝓃-open set, then 𝒦 ⊆ 𝓃𝖢L (𝓃ἱnt⋆ 
(𝒦)) and 𝓃𝖢L (𝒦) ⊆ 𝓃𝖢L (𝓃ἱnt

 ⋆(𝒦)). But 

𝓃𝖢L (𝓃ἱnt⋆ (𝒦)) ⊆ 𝓃𝖢L (𝒦). Hence 𝓃𝖢L (𝒦) = 𝓃𝖢L (𝓃ἱnt⋆(𝒦)). Conversely, 𝒦 ⊆ 𝓃𝖢L (𝒦) = 𝓃𝖢L 

(𝓃ἱnt⋆(𝒦)) by assumption. Consequently, 𝒦 is semi⋆- 𝐼𝓃 -open. 

Corollary: 3.15.  If 𝒦 ⊆ Ʋ ,  Ideal nanotopological space (Ʋ, 𝒩, I) is  semi⋆-𝐼𝓃-closed ⇔ 𝒦 is a 𝒯 

-𝐼𝓃 set. 

 Proof:   𝒦 is semi⋆-𝐼𝓃-closed in Ʋ ⇔ (Ʋ - 𝒦) semi⋆- 𝐼𝓃 - open 

⇔ 𝓃𝖢L (Ʋ − 𝒦) = 𝓃𝖢L (𝓃ἱnt∗ (Ʋ − 𝒦)) by Proposition 3.14 

⇔ Ʋ – (𝓃ἱnt (𝒦)) = Ʋ – (𝓃ἱnt (𝓃𝖢L⋆(𝒦))) 

⇔ 𝓃ἱnt (𝒦) = 𝓃ἱnt (𝓃𝖢L⋆(𝒦)) 

⇔   is a 𝒯-𝐼𝓃 set. 

Theorem: 3.16.  If 𝒦 ⊆ Ʋ ,  Ideal nanotopological space (Ʋ, 𝒩, I).  Then the set (𝒦) is semi⋆-𝐼𝓃-

closed ⇔ 𝒦 is semi pre⋆-𝐼𝓃- closed and B-𝐼𝓃 set.  

Proof:   𝒦 is semi⋆- 𝐼𝓃 -closed in Ʋ, this mean 𝒦 is a 𝒯-𝐼𝓃 set (by remark 3.6)  and 𝒦 is semi pre⋆-

𝐼𝓃 -closed and B-𝐼𝓃 set (by theorem 3.13)  

Remark: 3.17.  The union of two semi⋆-𝐼𝓃 -closed (semἱ pre⋆-𝐼𝓃- closed) set is not  semἱ⋆-𝐼𝓃- 

closed (semἱ pre⋆-𝐼𝓃- closed) set 

 Example: 3.18. Desire of Ideal nanotopological space (Ʋ, 𝒩, 𝐼) of example(3.11)  If  𝒦 = {ℯ1, ℯ3} 

and ℋ = {ℯ4}, 𝓃ἱnt (𝓃𝖢L⋆(𝒦)) = 𝓃ἱnt (𝓃𝖢L⋆ ({ℯ1, ℯ3})) = 𝓃ἱnt ({ℯ1, ℯ2, ℯ3}) = {ℯ1, ℯ3} = 𝒦 and 

so 𝒦 is semi⋆-𝐼𝓃-closed and hence semi pre⋆-𝐼𝓃-closed. 

    Also,   𝓃ἱnt (𝓃𝖢L⋆ (ℋ)) = 𝓃ἱnt (𝓃𝖢L⋆ ({ℯ4})) = 𝓃ἱnt ({ℯ4}) = {ℯ4} = ℋ. Consequently, ℋ is 

semi⋆-𝐼𝓃-closed and so semi pre⋆-𝐼𝓃-closed. But 𝓃ἱnt (𝓃𝖢L⋆(𝓃ἱnt (𝒦 ∪ ℋ))) = 𝓃ἱnt (𝓃𝖢L⋆ (𝓃ἱnt 

({ℯ1, ℯ3, ℯ4}))) = 𝓃ἱnt (𝖢L⋆({ℯ1, ℯ3, ℯ4})) = 𝓃ἱnt (Ʋ) = Ʋ ⊈ 𝒦 ∪ ℋ and so 𝒦 ∪ ℋ is not semi pre⋆-

𝐼𝓃-closed and hence 𝒦 ∪ ℋ is not semi⋆-𝐼𝓃-closed. 
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