New types of Contra_(1,2)*_open Functions Dunya Mohamed Hameed, Sanaa Hamdi Jasem and Intidhar Zamil Mushtt Mustansiriyah University, College of Education, Department of Mathematics dunya_mahamed@uomustansiriyah.edu.iq Hamdi_sanaa@uomustansiriyah.edu.iq Intidhar.z.mushtt@uomustansiryah.edu.iq ### **Abstract:** The aim in this article is to present and study several kinds of contra _(1,2)* _open functions namely [contra _(1,2)*_ sg* _open functions , contra _(1,2)* _ sg** _open functions , contra _(1,2)* _ (sg*, g) _ open functions , contra _(1,2)* _ (sg*, g) _ open functions , contra _(1,2)* _ (g , sg*) _open functions] in bitopological spaces. Also some of their propositions are proven and we will discuss the relationship between these functions. **Keywords:** $(1,2)^* _ sg^* _ open functions, contra _ (1,2)^* _ open functions, contra _ (1,2)^* _ sg^* _ open functions, contra _ (1,2)^* _ sg^{**} _ open functions, contra _ (1,2)^* _ sg^{***} _ open functions.$ انواع جديدة من الدوال الضد _*(1,2)_ المفتوحة دنيا محمد حميد سناء حمدي جاسم انتظار زامل مشتت الجامعة المستنصرية ، كلية التربية ، قسم الرياضيات الخلاصة الكلمات المفتاحية: الدالة المفتوحة *sg_*(1,2) ، الدالة ضد المفتوحة *(1,2) ، الدالة ضد المفتوحة *sg مناطقة الدالة ضد المفتوحة *sg *(1,2) ، ### 1. Introduction: In 1963, Kelly [1] introduced the notion of bitopological spaces .In [4] O. Ravi;etal introduced and studied in(2011)the concept of (1,2)*_g_closed maps. In (2011) ,O. Ravi ;etal [5] studied and investigated the properties of (1,2)*_sg*_homeomorphisms but he studied in (2015) , [7] (1,2)*_g#-continuous function .In (2016) Dunya and Messaa[2]studied some types of (1,2)*-M- πgb – closedmapping . In (2017)some properties of t_1t_2 - δ semiopen and closed in bitopological spaces set s was introduced by M. Arunmaran;etal .While , the concepts of contra_(1,2)*_ $M_{\delta\pi}$ -continuous functions given and discussion by (Mohana and Arockiarani)[9] and in (2018) Mohammed ;etal. Studied a new type of contra-continuity via $\delta - \beta - open$ set s[10]. The aim of this paper is to introduce some new types of contra_(1,2)*_open functions. Also, we given the relationships between these type of functions and study some their properties in bitopological spaces. Throughout this paper, H ,M and N denote bitopological spaces (H , \mathcal{T}_1 , \mathcal{T}_2),(M, ρ_1 , ρ_2) and (N, ξ_1 , ξ_2) respectively . # 2. preliminaries: **Definition (2,1), [3]:-** Let $K \subseteq (X, \mathcal{T}_1, \mathcal{T}_2)$, then K is $\mathcal{T}_{1,2}$ -open (or (1,2)*_open), if $K = E \cup F$, where $E \in \mathcal{T}_1$ and $F \in \mathcal{T}_2$. ($\mathcal{T}_{1,2}$ -open) is $\mathcal{T}_{1,2}$ -closed (or (1,2)*_closed). **Definition** (2, 2),[3]: Let K be a subset of a bitopological space $(H, \mathcal{T}_1, \mathcal{T}_2)$, then - (1) \cap {F:K \subseteq F : F is $\mathcal{T}_{1,2}$ _closed } is $\mathcal{T}_{1,2}$ _closure of K - (2) \cup {E:E \subseteq K : E is $\mathcal{T}_{1,2}$ _open } is $\mathcal{T}_{1,2}$ _Interior of K. ## Remark(2,3), [4]: $\mathcal{T}_{1,2}$ -open subset s of (H, \mathcal{T}_1 , \mathcal{T}_2), it is not necessary form a topology. **Example** (2,4): Let $H = \{ \mathcal{P}, \mathcal{Q}, \mathcal{P} \}$ and let $\mathcal{T}_1 = \{ H, \phi, \{ \mathcal{P}, \mathcal{P} \} \}$ and $\mathcal{T}_2 = \{ H, \phi, \{ \mathcal{Q}, \mathcal{P} \} \}$, then $\mathcal{T}_{1,2}$ open set in $(H, \mathcal{T}_1, \mathcal{T}_2) = \{ H, \phi, \{ \mathcal{P}, \mathcal{P} \}, \{ \mathcal{Q}, \mathcal{P} \} \}$. It clear that $\mathcal{T}_{1,2}$ open subset s of $(H, \mathcal{T}_1, \mathcal{T}_2)$ is not form topology. **Definition(2,5), [3]**:A subset K of a bitopological space(H, \mathcal{T}_1 , \mathcal{T}_2) is $(1, 2)^*$ _semi_open if $K \subset \tau_1 \tau_2$ _cl($\tau_1 \tau_2$ _int (K), the set $(1, 2)^*$ _semi_closed is the complement of $(1, 2)^*$ _semi_open set. And the intersection of all $(1, 2)^*$ _semi_closed sets of K containing K is $(1, 2)^*$ _semi_closure and symbolize it $(1, 2)^*$ _scl(K). **Definition(2,6)**: Let $(H, \mathcal{T}_1, \mathcal{T}_2)$ be a bitopological space and $S \subseteq H$, then S is: - 1. $(1,2)^*$ _Generalized closed s [6] $((1,2)^*$ _g_closed set) if $\mathcal{T}_{1,2}$ _cl(S) \subset W whenever S \subset W and W \in $(1,2)^*$ -open set in $(H,\mathcal{T}_1,\mathcal{T}_2)$. - 2. $(1,2)^*$ _semi_Generalized_star_closed set [5] ($(1,2)^*$ _s g^* _closed set) if $\mathcal{T}_{1,2}$ _cl(S) \subset W s.t. S \subset W , U is $(1,2)^*$ _ semiopen set in $(H,\mathcal{T}_1,\mathcal{T}_2)$. **Remark**(2,7): In [5], [6] it is proved that in M bitopological spaces H - (i) Every $\mathcal{T}_{1,2}$ _closed (resp. $\mathcal{T}_{1,2}$ _open) set in H is $(1,2)^*$ _s g^* _closed (resp. $(1,2)^*$ _s g^* _open) set - (ii) Every $T_{1,2}$ closed (resp. $T_{1,2}$ open) set in H is (1, 2)* g closed (resp. (1, 2)* g open) set - (iii) Every $(1,2)^*_sg^*_closed(resp. (1,2)^*_sg^*_open$)set in H is $(1,2)^*_g_closed$ (resp. $(1,2)^*_g_open$)set in H. The family of all $(1,2)^*$ _g_closed (resp. $(1,2)^*$ _g_open) set s and $(1,2)^*$ _s g^* _closed(resp. $(1,2)^*$ _s g^* _open) set s of $(H,\mathcal{T}_1,\mathcal{T}_2)$ will be denoted by $(1,2)^*$ _gC(H) (resp. $(1,2)^*$ _gO(H))and $(1,2)^*$ _S g^* C(H) (resp. $(1,2)^*$ _S g^* O(H)). **Definition (2,8):** A function $\lambda: (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (M, \rho_1, \rho_2)$ is: • $(1,2)^*$ _open (resp. $(1, 2)^*$ _closed) function [3] if for every $\mathcal{T}_{1,2}$ _open (resp. $\mathcal{T}_{1,2}$ _closed) set S in H λ (S) is $\rho_1 \rho_2$ _open (resp. $\rho_1 \rho_2$ _ closed) set in M - $(1,2)^*$ _g_open (resp. $(1,2)^*$ _g_closed)function [4] if for every $\mathcal{T}_{1,2}$ _open (resp. $\mathcal{T}_{1,2}$ closed) set S in H , λ (S) is (1,2)*_g_open (resp.(1,2)*_g_closed)set in M. - $(1,2)*_sg*_open$ (resp. $(1,2)*_sg*_closed$)function[5] if for every $\mathcal{T}_{1,2}_open$ (resp. $T_{1,2}$ _closed) set S in H, λ (S) is $(1,2)*_sg*_open$ (resp. $(1,2)*_sg*_closed$)set in M. - pre_ $(1,2)^*$ _ sg*_open (resp. pre_ $(1,2)^*$ _sg*closed function[5] if for every $(1,2)^*$ _sg * _open (resp.(1,2)*_sg*_closed)set S in H , λ (S) is (1,2)*_sg*_open (resp.(1,2)*_sg*_closed) in M. - Contra_(1, Contra_(1, 2)*_closed) function 2)*_open (resp. $T_{1,2}$ -open (resp. $T_{1,2}$ -closed) set S in H , λ (S) is $\rho_1 \rho_2$ -closed (resp. $\rho_1 \rho_2$ -open) set in **Definition(2,9),[4],[5]:** A bitopological space $(H, \mathcal{T}_1, \mathcal{T}_2)$ is called: - (1) $(1,2)^*$ _ $\mathcal{T}_{1/2}$ _space if every $(1, 2)^*$ _g_closed(resp. $(1,2)^*$ _g_open) set in H is $\mathcal{T}_{1,2}$ _closed(resp. $\mathcal{T}_{1.2}$ _open) - (2) RM_ space if any subs in $(H, \mathcal{T}_1, \mathcal{T}_2)$ is either $\mathcal{T}_{1,2}$ open or $\mathcal{T}_{1,2}$ closed. **Theorem(2,10),[5]**: In RM-space H every(1, 2)* $_{s}g*_{closed}(resp. (1, 2)* _{s}g*_{open})$ set in H is $T_{1,2}$ _closed (resp. $T_{1,2}$ _open) set . # 3. Certain Kinds of Contra _ (1, 2)*_open nctions : In this section, we define and study some new types of contra_(1,2)*_open functions in bitopological spaces. Now, we will introduce first type of contra_(1,2)*_open functions in the following definition: A function λ :(H , \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (M, ρ_1 , ρ_2) is said to be contra **Definition** (3,1): $(1,2)^*$ sg*_open functionif for every $\mathcal{T}_{1,2}$ open set S in $(H,\mathcal{T}_1,\mathcal{T}_2)$, λ (S) is (1,2)*_sg*_closedset in (M, ρ_1, ρ_2) . **Example (3,2):** Suppose $H = M = \{ p, q, r \}$ and $\mathcal{T}_1 = \{ H, \phi, \{ p \} \}$, $\mathcal{T}_2 = \{ H, \phi \}$, $\rho_1 = \{ M, \phi, \{ q \} \}$, $\rho_2 = \{ M, \phi, \{ p \}, \{ p, q \} \}$. Then the set s in $\{ H, \phi, \{ p \} \}$ are called $\mathcal{T}_{1,2}$ open set s in H, the set s in ={ M, ϕ , {p}, {q}, {p, q} } are called $\rho_{1,2}$ open set s in (M, ρ_1 , ρ_2), and Sg*C (M, $\rho_1, \rho_2 = \{ M, \phi, \{r\}, \{p, r\}, \{q, r\} \} \}$. Define $\lambda : (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (M, \rho_1, \rho_2)$ by $\lambda (p) = r, \lambda$ (q)=q and $\lambda(r)=p$, clearly that λ is contra_(1,2)*_sg*_open function. **Proposition** (3,3): Every contra_(1,2)*_open function is contra_(1,2)*_sg*_open . **Proof:** Let $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (M, \rho_1,\rho_2)$ be a contra_(1,2)*_open function and let S is $T_{1,2}$ -open set in H, since λ is a contra_(1,2)*_open. Thus, λ (S) is $\rho_{1,2}$ - closed in M and by (2,7) step-1-, we get, λ (S) is $(1,2)*_sg*_closedset$ in M . Hence, λ $(1,2)^*$ sg* open function. To demonstrate that the inverse of the proposition(3,3) is not always correct we have Example (3,4): **Example (3,4):** Let $H = M = \{ p, q, r \}$ with the topologies $T_1 = \{ H, \phi, \{ p, r \} \}, T_2 = \{ H, \phi \},$ $\rho_1 = \{ H, \phi, \{p\} \}$ and $\rho_2 = \{ M, \phi, \{q, r\} \}$, then $\mathcal{T}_{1,2}$ open set in $(H, \mathcal{T}_1, \mathcal{T}_2) = \{ H, \phi, \{p, r\} \}$, $\rho_{1,2}$ _open in $(M, \rho_1, \rho_2) = \{M, \phi, \{p\}, \{q, r\}\}\$, $\rho_{1,2}$ _closedin $(M, \rho_1, \rho_2) = \{M, \phi, \{p\}, \{q, r\}\}\$, and $Sg^*C(M, \rho_1, \rho_2) = \{M, \emptyset, \{p\}, \{q\}, \{r\}, \{p, q\}, \{p, r'\}, \{q, r'\}\}\}$. Define $\lambda : (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow$ (M, ρ_1, ρ_2) by λ (p)=p, λ (q)=q and λ (r)=r, clearly that λ contra (1,2)* sg*_open function, but is not contra (1,2)*_open. Since, for $\mathcal{T}_{1,2}$ _open set $S=\{p,$ r} in H, λ (S)= λ ({p, r})={p, r} is not $\rho_{1,2}$ _closed set s in M. To make the converse true we give the following proposition: **Proposition** (3,5): If $\lambda : (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (M, \rho_1, \rho_2)$ is a contra_(1,2)*_sg*_open function and M is a RM-space, then λ is contra_(1,2)*_open. ## **Proof:-** Let S be a $T_{1,2}$ -open s in H . Since λ is contra_(1,2)*_sg*_open function .Thus , λ (S) is (1,2)*_ sg*_closed set in M, According to the assumption M is RM-space. Hence, λ (S) is $\rho_{1,2}$ _closed in M Therefore, λ is contra_(1,2)*_open function. **Remark(3,6):** The composition of two contra_(1,2)*_sg*_open functions doesn't have to be $contra_(1,2)*_sg*_open:$ **Example (3,7):**Let $H = M = N = \{p,q,r\}$ and let $T_1 = \{H,\phi,\{p\},\{p,q\}, T_2 = \{H,\phi,\{q\}\}\}, \rho_1 = \{M\}, \rho_1 = \{M\}, \rho_2 = \{M\}, \rho_3 = \{M\}, \rho_4 \{$ $\{\phi, \{p\}\}\$, $\rho_2 = \{N, \phi, \{q, p\}\}\$, $\xi_1 = \{N, \phi\}\$, $\xi_2 = \{N, \phi, \{p, p\}\}\$, then $\mathcal{T}_{1,2}$ — open $\{p\}$, $\{p\}$, $\{q,r\}$ and $\{q\}$, $\{q$ \mathcal{N} , define a function $\lambda: (H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (M,\rho_1,\rho_2)$ by $\lambda(p) = p$, $\lambda(q) = q$ and $\lambda(r) = r$ and $\gamma:(M,\rho_1,\rho_2)\longrightarrow(N,\xi_1,\xi_2)$ by $\gamma(p)=q$, $\gamma(q)=r$ and $\gamma(r)=p$, It is observe that function λ and γ $contra_(1,2)*_sg*_open$ functions, but $\gamma \circ \lambda: (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (N, \xi_1, \xi_2)$ contra_(1,2)*_sg*_open , since for $\mathcal{T}_{1,2}$ - open set $S=\{q\}$ in H, $\gamma \circ \lambda$ (S)= $\gamma \circ \lambda$ ($\{q\}$)= γ (λ $(\lbrace q \rbrace) = \gamma (q) = r$ is not $(1,2)*_sg*_closedin N$. # **Proposition**(3,8): Let $\lambda: (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (M, \rho_1, \rho_2)$ be contra_(1,2)*_sg*_open function and $\gamma: (M, \rho_1, \rho_2)$ \longrightarrow (N, ξ_1, ξ_2) be a pre_(1,2)*_sg*_closedfunction, then $\gamma \circ \lambda$:(H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (N, ξ_1, ξ_2) is $contra_(1,2)* _sg*_open function$. **Proof:** Let S is $\mathcal{T}_{1,2}$ open set in H,. Thus, λ (S) is $(1,2)*_sg*_closedin$ M. Also, since γ is a pre_(1,2)*_sg*_closed, then $\gamma(\lambda(S)) = \gamma \circ \lambda(S)$ is (1,2)*_sg*_closedin N .Therefore, $\gamma \circ \lambda(S) = \gamma \circ \lambda(S)$ $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow(N,\xi_1,\xi_2)$ is contra_(1,2)*_sg*_ open function. # **Proposition**(3,9): Let $\lambda : (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (M, \rho_1, \rho_2)$ be $(1,2)^*$ open function and $\gamma : (M, \rho_1, \rho_2) \longrightarrow (N, \xi_1, \xi_2)$ be a contra $(1,2)^*$ sg* open function , then $\gamma \circ \lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (N,\xi_1,\xi_2)$ $contra_(1,2)*_sg*_open$. **Proof**: Suppose S is $\mathcal{T}_{1,2}$ -open in H. Thus, λ (S) is $\rho_{1,2}$ -open set in M, since γ is a contra_(1,2)_sg*_open then γ (λ (S))= $\gamma \circ \lambda$ (S) is (1,2)*_sg*_closed in N . Therefore , $\gamma \circ$ $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (N,\xi_1,\xi_2)$ is contra $(1,2)^*$ _s g^* _open function. **Proposition** (3,10): Let λ : (H , \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (M, ρ_1 , ρ_2) be any function and γ :(M, ρ_1 , ρ_2) \longrightarrow (N, ξ_1 , ξ_2) be a contra _(1,2)* _sg*_open function, then $\gamma \circ \lambda$:(H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (N, ξ_1 , ξ_2) is contra(1,2)*_sg*_open if M is RM-space and λ is - (i) $(1,2)*_sg*_open$. - (ii) pre $_{(1,2)}*_{s}g*_{open}$. #### **Proof** (i):- Let S be a $\mathcal{T}_{1,2}$ -open s in H. Thus, λ (S) is a (1,2)*_sg*_open in M, by hypothesis M is RMspace. Then, λ (S) is a $\rho_{1,2}$ -open set in M, since γ is a contra_(1,2)_s g^* -open, then γ (λ (S))= $\gamma \circ \lambda$ (S) is a (1,2)*_sg*_closed in N . Therefore , $\gamma \circ \lambda$:(H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (N , ξ_1 , ξ_2) is contra(1,2)*_sg*_open function. The proof of step-ii- similar to step-i-. In the following another type of contra_(1,2)_s g^* _open: #### **Definition (3, 11):** A function $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (M,\,\rho_1,\rho_2)$ is contra_(1,2)*_sg**_open function if for every (1,2)*_sg*_open set S in (H, $\mathcal{T}_1,\mathcal{T}_2$), λ (S) is (1,2)*_sg*_closedset in (M, ρ_1,ρ_2). **Example** (3,12): Let $H=M=\{\mathcal{P}, q, r\}$ and $\mathcal{T}_1=\{H, \phi\}$ and $\mathcal{T}_2=\{H, \phi, \{\mathcal{P}\}\}, \rho_1=\{M, \phi\}$, and $\rho_2=\{M, \phi, \{\mathcal{P}, r\}\}$, then $\mathcal{T}_{1,2}$ open in $(H, \mathcal{T}_1, \mathcal{T}_2)=Sg^*O(H, \mathcal{T}_1, \mathcal{T}_2)=\{H, \phi, \{\mathcal{P}\}\}, \rho_{1,2}$ open set S in $(M, \rho_1, \rho_2)=\{M, \phi, \{\mathcal{P}, r\}\}, \rho_{1,2}$ closed set S in $(M, \rho_1, \rho_2)=\{M, \phi, \{\mathcal{Q}\}\}, \rho_{1,2}$ and $Sg^*C(M, \rho_1, \rho_2)=\{M, \phi, \{\mathcal{Q}\}, \{\mathcal{P}, \mathcal{Q}\}, \{\mathcal{Q}, r\}\}, \rho_{1,2}$ define $\lambda:(H, \mathcal{T}_1, \mathcal{T}_2)\longrightarrow (M, \rho_1, \rho_2)$ by $\lambda:(\mathcal{P})=\mathcal{Q}$, $\lambda:(\mathcal{Q})=0$ and $\lambda:(r)=1$, thus $\lambda:(r)=$ **Proposition** (3,13): Every contra_(1,2)*_sg**_open function contra (1,2)*_sg*_open . **Proof:** Let $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (M,\rho_1,\rho_2)$ be a contra_(1,2)*_-sg**_open function and let S be a $\mathcal{T}_{1,2}$ -open set in H, by Remark(2,7) step-i we get S is (1,2)*_sg*_open in H. Also, we have λ is contra_(1,2)_sg**_open function. Thus , λ (S) is(1,2)*_sg*_closed set in M . Hence , λ is contra (1,2)*_sg**_open function . The converse of above proposition needn't be true in general: **Example** (3,14):- Suppose that $H = M = \{ \mathcal{P}, \mathcal{Q}, \mathcal{V} \}$, $\mathcal{T}_1 = \{ H, \phi \}$, $\mathcal{T}_2 = \{ H, \phi, \{ \mathcal{P}, \mathcal{V} \} \}$, $\rho_1 = \{ M, \phi, \{ \mathcal{Q} \} \}$, and $\rho_2 = \{ M, \phi, \{ \mathcal{P} \}, \{ \mathcal{P}, \mathcal{Q} \} \}$, then $\mathcal{T}_{1,2}$ open set s in(H, \mathcal{T}_1 , \mathcal{T}_2)= $\{ H, \phi, \{ \mathcal{P}, \mathcal{V} \} \}$, $Sg^*O(H, \mathcal{T}_1, \mathcal{T}_2) = \{ H, \phi, \{ \mathcal{P}, \mathcal{V} \} \}$, $\mathcal{P}_{1,2}$ open set s in $(M, \rho_1, \rho_2) = \{ M, \phi, \{ \mathcal{P}, \mathcal{V} \}, \{ \mathcal{Q}, \mathcal{V} \} \}$ and $\rho_{1,2}$ -closed set s in $(M, \rho_1, \rho_2) = Sg^*C(M, \rho_1, \rho_2) = \{ M, \phi, \{ \mathcal{V}, \{ \mathcal{P}, \mathcal{V} \}, \{ \mathcal{Q}, \mathcal{V} \} \}$. define λ :(H, $\mathcal{T}_1, \mathcal{T}_2$) \longrightarrow (M, ρ_1, ρ_2) by λ (\mathcal{P})= \mathcal{Q}_1 , λ (\mathcal{Q})=b and λ (\mathcal{V})= \mathcal{V}_2 . It is clear that λ is contra_(1,2)*_s g^* _open, but λ is not contra_(1,2)*_s g^* _open, since for (1,2)*_s g^* _open set $S=\{ \mathcal{P} \}$ in H, $f(S)=f(\{ \mathcal{P} \})=\mathcal{Q}_2$ is not (1,2)*_s g^* _closed set in M. To make the converse true we give the following proposition: **Proposition (3,15):** If λ : (H , \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (M, ρ_1 , ρ_2) is a contra_(1,2)*_sg*_open function and H is RM-space , then λ is contra_(1,2)*_sg**_open . **Proof**:- suppose S is $(1,2)^*_sg^*_open$ in H , we have H is RM-space , then by using Theorem(2,9) we get , S is $\mathcal{T}_{1,2}_open$ in H . Also , since λ is a contra(1,2)* $_sg^*_open$ function . Thus , λ (S) is $(1,2)^*_sg^*_closed$ in M . Hence λ is contra_(1,2)* $_sg^{**}_open$ function. **Remark(3,16):** The concepts of contra_(1,2)*_open function and contra _(1,2)*_sg**_open function are independent . **Example (3,17):** Let $H = M = \{ \mathcal{P} \ , \ \mathcal{Q} \ , \ \mathcal{V} \}$ and let $\mathcal{T}_1 = \{ H \ , \ \phi \ , \{ \mathcal{P} \} \}$ and $\mathcal{T}_2 = \{ H \ , \ \phi, \{ \mathcal{P} \ , \mathcal{V} \} \}$, $\rho_1 = \{ M \ , \ \phi \} \ , \ \rho_2 = \{ M \ , \ \phi \ , \{ \mathcal{P} \ , \mathcal{V} \} \}$, then $\mathcal{T}_{1,2}$ open set s in $(H \ , \mathcal{T}_1 \ , \mathcal{T}_2) = Sg^*O(H \ , \mathcal{T}_1 \ , \mathcal{T}_2) = \{ H \ , \ \phi \ , \{ \mathcal{P} \ , \mathcal{V} \} \}$, $\rho_{1,2}$ open set s in $(M, \rho_1 \ , \rho_2) = \{ H, \phi, \{ \mathcal{P} \ , \mathcal{V} \} \}$, $\rho_{1,2}$ closed set s in $(M, \rho_1 \ , \rho_2) = \{ M, \phi, \{ \mathcal{Q} \} \ , \{ \mathcal{Q} \ , \mathcal{V} \} \}$, define λ : $(H, \mathcal{T}_1 \ , \mathcal{T}_2) \longrightarrow (M, \ \rho_1 \ , \rho_2)$ by λ ($\mathcal{P} = \mathcal{Q} \ , \lambda$ ($\mathcal{Q} = b$ and λ ($\mathcal{V} = \mathcal{V} \ , clearly <math>\lambda$ is contra_(1,2)*_sg*_open function , but λ is not contra_(1,2)*_open , since for $\mathcal{T}_{1,2}$ -open set $S = \{ \mathcal{P} \ , \mathcal{V} \}$ in $H \ , \lambda$ ($S = \lambda$ ($\{ \mathcal{P} \ , \mathcal{V} \} = \{ \mathcal{Q} \ , \mathcal{V} \}$ is not $\rho_{1,2}$ closed set in M . \mathscr{N} , $Sg^*O(H, \mathcal{T}_1, \mathcal{T}_2) = \{H, \phi, \{p\}, \{r\}, \{p, r'\}\}\$ and $Sg^*C(M, \rho_1, \rho_2) = \{M, \phi, \{p\}, \{q\}, \{q, r'\}, \{p, q\}\}\}$. Define $\lambda: (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (M, \rho_1, \rho_2)$ by $\lambda(p) = q, \lambda(q) = b$ and $\lambda(r) = r$, clearly λ is contra_(1,2)*_open function, but λ is not contra_(1,2)*_s g^* _open, since for (1,2)*_s g^* _open set $S = \{r'\}$ in H, $\lambda(S) = \lambda(\{r'\}) = \{r'\}$ is not (1,2)*_s g^* _closed set in M. To make the converse true we give the following proposition: ## Proposition (3,19): If $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (M,\rho_1,\rho_2)$ is a contra_(1,2)*_s g^* *_open function and M is RM-space, then λ is contra_(1,2)*_open. **Proof:** Let S be $\mathcal{T}_{1,2}$ -open in H, by (2,7)step-i- we get, S is $(1,2)^*$ _s g^* _open in H, also since λ is contra_ $(1,2)^*$ _s g^{**} _open function. Thus, λ (S) is a $(1,2)^*$ _s g^* _ closed set in M, by hypothesis M is RM-space, then by Theorem (2,10) we get, λ (S) is a $\rho_{1,2}$ _open set in M. Therefore, λ is contra_(1,2)*_open function In the same way, we prove the next proposition. **Proposition** (3,20): If $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (M,\rho_1,\rho_2)$ is a contra_(1,2)*_open function and H is a RM-space, then λ is contra_(1,2)*_s g^{**} _open. Next, we Give some propositions about the composition of contra (1,2)* $_sg^**_open$ function with other (1,2)* $_open$ and (1,2)* $_closed$ function types : **Proposition** (3,21): Let $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (M, \rho_1,\rho_2)$ be any function and $\gamma:(M, \rho_1,\rho_2) \longrightarrow (N, \xi_1,\xi_2)$ be contra_(1,2)*_s g^* -open function ,then $\gamma \circ \lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (M, \xi_1,\xi_2)$ is contra_(1,2)*_s g^* -open . If λ is - (i) $(1,2)* _sg*_open$ nction. - (ii)(1,2)* _open nction. #### **Proof** (i) Let S be $\mathcal{T}_{1,2}$ -open in H ,by hypotheses λ is $(1,2)^*_sg^*$ -open function . Thus , λ (S) is $(1,2)^*_sg^*$ -open set in M . Also , since γ is a contra $_(1,2)^*_sg^{**}$ -open function , then γ (λ (S))= $(\gamma \circ \lambda)$ (S) is $(1,2)^*_sg^*$ - closedin N . Therefore , $\gamma \circ \lambda$:(H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (N , ξ_1 , ξ_2) is contra $_(1,2)^*_sg^*$ -open. The prove of part-ii- similar to part -i-. **Proposition** (3,22): Suppose $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (M,\,\rho_1\,,\rho_2)$ be a pre_(1,2)*_s g^* *_open function and $\gamma:(M,\,\rho_1\,,\rho_2)\longrightarrow (N\,,\xi_1,\xi_2)$ be a contra_(1,2)*_s g^* *_open function , then $\gamma\circ\lambda:(H,\mathcal{T}_1\,,\mathcal{T}_2)\longrightarrow (N\,,\xi_1,\xi_2)$ is contra_(1,2)*_s g^* *_open function . **Poof :-** Suppose S is $(1,2)^*_sg^*_open$ set in H , since λ is a pre__(1,2)*__sg__open function . Thus , λ (S) is $(1,2)^*_-sg^*_open$ set in M . Also , since γ is a contra__(1,2)*__sg^**_open function , then γ (λ (S))= γ \circ λ (S) is(1,2)*__sg^*_ closed in N . Therefore , γ \circ λ :(H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (N , ξ_1 , ξ_2) is contra__(1,2)*__sg^**__open . #### Proposition (3,23): Let λ :(H , \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (M, ρ_1 , ρ_2) be a contra_(1,2)*_s g^* -open function and γ :(M, ρ_1 , ρ_2) \longrightarrow (N , ξ_1 , ξ_2) be a pre_(1,2)*_s g^* -closed function , then $\gamma \circ \lambda$:(H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (N , ξ_1 , ξ_2) is contra(1,2)*_s g^* -open . **Proof:-** Suppose S is $(1,2)^*$ _s g^* _open in H, since λ is a contra_ $(1,2)^*$ _s g^** _open function .Thus, λ (S) is $(1,2)^*$ _s g^* _closed in M. Also , since γ is a pre__(1,2)_s g^* _closed , then γ (λ (S))= $\gamma \circ \lambda$ (S) is a $(1,2)^*$ _s g^* _ closed in N . Therefore , $\gamma \circ \lambda$:(H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (N , ξ_1 , ξ_2) is contra_ $(1,2)^*$ _s g^* *_open function . ### **Remark(3,24):** If $\lambda: (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (M, \rho_1, \rho_2)$ is contra_(1,2)*_s g^* *_open and $\gamma: (M, \rho_1, \rho_2) \longrightarrow (N, \xi_1, \xi_2)$ is (1,2)*_closed ((1,2)*_s g^* _closed)function, then $\gamma \circ \lambda: (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (N, \xi_1, \xi_2)$ is not necessary contra_(1,2)*_s g^* *_open function. As shows in (3,25) **Example(3,25):** Let $H = M = N = \{ p,q , r \}$ and let $\mathcal{T}_1 = \{ H , \phi , \{ p \}, \{ p , r \} \}$, $\mathcal{T}_2 = \{ H , \phi , \{ q , r r \} \}$, $\rho_1 = \{ m , \phi \}$, $\rho_2 = \{ M, \phi, \{ p \}, \{ q , r r \} \}$, $\xi_1 = \{ N, \phi, \{ p \} \}$ and $\xi_2 = \{ N, \phi, \{ q \}, \{ p, q \} \}$, then $\mathcal{T}_{1,2}$ open in $(H, \mathcal{T}_1, \mathcal{T}_2) = \{ H, \phi , \{ p \}, \{ p, r \}, \{ q, r r \} \}$, $\rho_{1,2}$ open in $(M, \rho_1, \rho_2) = \{ M, \phi, \{ p \}, \{ q , r r \} \}$, $\rho_{1,2}$ closed set s in $(M, \rho_1, \rho_2) = \{ M, \phi, \{ p \}, \{ q, r r \} \}$, then $\xi_{1,2}$ open set s in $(N, \xi_1, \xi_2) = \{ N, \phi, \{ p \}, \{ q \}, \{ p , q \} \}$, define a function $\lambda: (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (M, \rho_1, \rho_2)$ by λ $(p) = p, \lambda$ (q) = q and λ (r) = r and define $\gamma: (M, \rho_1, \rho_2) \longrightarrow (N, \xi_1, \xi_2)$ by γ $(p) = \gamma$ (q) = r and γ (r) = q. It is observe that λ is contra_ $(1, 2)^* = sg^{**}$ open function and γ is $[(1, 2)^* = sg^{**}$ open function. But $\gamma \circ \lambda: (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (N, \xi_1, \xi_2)$ is not contra_ $(1, 2)^* = sg^{**}$ open function, since for $(1, 2)^* = sg^*$ open set $S = \{ r \}$ in H, $\gamma \circ \lambda$ $(S) = \gamma \circ \lambda$ $(\{ r \}) = \gamma$ $(\lambda : \{ r \}) = \gamma$ $(-\gamma : r) = q$ is not $(1, 2)^* = sg^*$ closed set s in N. To make (3,24) true we must add another condition as we will notice in (3,26): # **Proposition**(3,26): Let $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (M, \rho_1,\rho_2)$ be a contra_(1,2)*_s g^{**} _open function and $\gamma:(M,\rho_1,\rho_2) \longrightarrow (N,\xi_1,\xi_2)$ be any open function, then $\gamma \circ \lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (N,\xi_1,\xi_2)$ is contra_(1,2)*_s g^{**} _open .If M is RM_ space and - (i) γ is (1,2)*_sg*_closed function. - (ii) γ is $(1,2)^*$ -closed function . #### Proof:- (i) Suppose S is $(1, 2)^*$ _s g^* _open s in H,. Thus , λ (S) is $(1, 2)^*$ _s g^* _closed in M , by hypothesis M is RM_ space and by Theorem(2,10) we get λ (S) is a $\rho_{1,2}$ -closed in M, and also since γ is $(1,2)^*$ _s g^* _ closed function , then γ (λ (S)) = $\gamma \circ \lambda$ (S). is a $(1,2)^*$ _s g^* _ closed in N . Therefore , $\gamma \circ \lambda$:(H, $\mathcal{T}_1,\mathcal{T}_2$) \longrightarrow (N, $\xi_1 \xi_2$) is contra_(1, 2)*_ g^{**} _open function . The prove of part-ii- similar to part -i-. In the following , we will Give another type of contra_(1,2)*_s g^* _open functions which is called contra_(1,2)*_ g^* **_open : **Definition** (3,27): A function :(H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (M, ρ_1 , ρ_2) is contra _(1,2)*_s g^{***} _open function if for Every (1,2)*_s g^* _open set S in (H, \mathcal{T}_1 , \mathcal{T}_2), λ (S) is $\rho_{1,2}$ _closed set in (M, ρ_1 , ρ_2). **Proposition (3,28):** Every contra $_(1,2)$ * $_sg$ ***_open function is - (i) $contra_(1,2)*_open$. - (ii) $contra_{(1,2)}* _sg^{**}_open$. #### **Proof:** - (i) Let $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (M,\,\rho_1,\rho_2)$ be a contra_(1,2)*_s g^*** _open function and let S is $\mathcal{T}_{1,2}$ -open set in H, by Remark(2,7)step-i- [Every $\mathcal{T}_{1,2}$ -open set is (1, 2)*_s g^* _open] so we get S is (1,2)*_s g^* _open in H. Also, since λ is a contra_(1,2)*_s g^*** _ open function. Thus, (S) is $\rho_{1,2}$ closed in M. Hence, λ is contra_(1,2)*_open function. - (ii): Let $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (M,\rho_1,\rho_2)$ is contra_(1,2)*_s g^{***} _open function and let S be (1, 2)*_s g^{*} _open in H ,since λ _is contra_(1,2)*_s g^{***} _ open function . Then , λ (S) is $\rho_{1,2}$ _ closed in M and by (2,7) step-i- So, we get λ (S) is $(1,2)*_sg*_closed$ in M. thus, λ is contra $(1,2)^*$)* sg^* -open function. Corollary (3,29): Every contra_(1, 2)*_sg***_open function is contra_(1, 2)*_sg*_open . **Proof:-** This follows proposition (3,28) part (i) and proposition (3,3). To demonstrate that the inverse of the proposition (3,28) and Corollary (3,29) not always correct, we have the next example: ### Example(3,30):- \mathcal{N} , then $\mathcal{T}_{1,2}$ —open set s in(H \mathcal{T}_1 , \mathcal{T}_2)={H \mathcal{N} , { \mathcal{P} , \mathcal{N} }}, $\rho_{1,2}$ _open set s in (M, ρ_1 , ρ_2) ={M, ϕ $\{p\}, \{p, r\}, \{q, r\}\}, \rho_{1,2}$ _closed in $(M, \rho_1, \rho_2) = \{M, \phi, \{p\}, \{q\}, \{q, r\}\}.$ Define λ $:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (M, \rho_1,\rho_2)$ by $\lambda(p)=q$, $\lambda(q)=b$ and $\lambda(r)=r$. It is observe that λ is $[contra_(1,2)*_open$ and contra_(1,2)*_sg*_open] function , but λ is not contra (1,2)*_sg***_open , since for (1,2)*_sg*_open set $S=\{r\}$ in H , λ (S)= λ ($\{r\}$)= $\{r\}$ is not $\rho_{1,2}$ _closed in M. (ii) Let $H = M = \{ p, q, r \}$, $T_1 = \{ H, \phi \}$, $T_2 = \{ H, \phi, \{ p \}, \{ p, r \} \}$, $\rho_1 = \{ M, \phi \}$, and $\rho_2 = \{ M, \phi \}$ $\{p, r\}$, then $\mathcal{T}_{1,2}$ open set s in(H, \mathcal{T}_1 , \mathcal{T}_2)= $\{H, \phi, \{p\}, \{p, r\}\}$, $\rho_{1,2}$ open set s in (M, ρ_1 , ρ_2) $=\{M, \phi, \{p, \mathcal{P}\}\}, \rho_{1,2}$ _closed set s in $(M, \rho_1, \rho_2)=\{M, \phi, \{q\}\}\}$. Define $\lambda:(H, \mathcal{T}_1, \mathcal{T}_2)\longrightarrow (M, \mathcal{T}_2, \mathcal{P}_1, \mathcal{P}_2)$ ρ_1 , ρ_2) by $\lambda(p)=q$, $\lambda(q)=b$ and $\lambda(r)=r$. It is observe that λ is contra_(1,2)*_s q^* _open, but λ is not contra_(1,2)*_s g^{***} _open , since for (1,2)*_s g^{*} _open set S={p,r} in H , λ (S)= λ $(\{p, r\})=\{q, r\}$ is not $\rho_{1,2}$ closed set in M. To make (3,28) and (3,29) are true we must add another condition as we will notice in (3,31): **Proposition** (3,31): If $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (M,\rho_1,\rho_2)$ is a contra_(1,2)*_open function and H is a RM_ space then λ is contra_(1,2)*_s g^{***} _open. **Proof:-** Suppose S be (1,2)*_sg*_open in H, since H is a RM_space. Hence, S is $\mathcal{T}_{1,2}$ _open in H . Also , since λ is contra(1,2)*_open function .Thus, λ (S) is $\rho_{1,2}$ closed in M. thus λ is contra_(1,2)* _sg***_open **Proposition** (3,32): If $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (M,\rho_1,\rho_2)$ is contra_(1,2)*_sg*_open function and H, M are two RM-spaces, then λ is contra_(1,2)*_s g^{***} _open. **Proof:** Let S be (1,2)*_sg*_open in H, since H is a RM _space .Hence, S is $\mathcal{T}_{1,2}$ _open in H .Since, λ is contra_(1,2)*_sg*_open , this lead λ (S) is (1,2)*_sg*_closed in M and by assumpotion M is RM _space . Hence , λ (S) is $\rho_{1,2}$ closed in M . Therefo , λ is contra $(1,2)^*$ sg*** open. In the same way we will prove (3,33): **Proposition** (3,33): If $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (M,\rho_1,\rho_2)$ is a contra_(1,2)*_sg**_open function and M is RM-spaces, then λ is contra_(1,2)*_s g^{***} _open. The composition of contra (1,2)*_s $g^{***}_{(1,2)}$ *_open functions with other (1,2)*_open and (1,2)*_closed functions types will be given in the following propositions: $\textbf{Proposition(3,34):} \ \, \text{Let} \ \, \lambda : (\text{H} \ , \mathcal{T}_1 \ , \mathcal{T}_2 \) \longrightarrow (\text{M} \ , \rho_1 \ , \rho_2) \ \, \text{be contra}_(1,2) * _ \text{s} g ***_ \text{open function and}$ $\gamma:(M,\rho_1,\rho_2)\longrightarrow (N,\xi_1,\xi_2)$ be any function ,then $\gamma\circ\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (N,\xi_1,\xi_2)$ is contra_(1,2)* $_sg^{***}$ _open , if γ is - **(i)** (1,2)*_closed function - (1,2)*-sg*-closed function (ii) #### **Proof:** (i) Suppose S is $(1,2)^*$ _s g^* _open in H ,. Thus , λ (S) is $\rho_{1,2}$ closed set in M. Also , since γ is function, then $\gamma(\lambda(S)) = \gamma \circ \lambda(S)$ is a $\xi_{1,2}$ closed in N. Hence, $\gamma \circ \lambda(S)$ $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow(N,\xi_1,\xi_2)$ is contra_(1,2)*_s g^{***} _open function. And in the same way ,part(ii) can be proved **Proposition(3,35):** Let $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (M,\rho_1,\rho_2)$ be contra_(1,2)*_s g^{***} _open function and $\gamma:(M, \rho_1, \rho_2) \longrightarrow (N, \xi_1, \xi_2)$ be pre_(1,2)*_sg*_closed function, then $\gamma \circ \lambda:(H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow$ (N, ξ_1, ξ_2) is contra_(1,2)*_sg**_open . **Proof:-** Let S be $(1, 2)*_sg*_open$ in H₁. Thus, λ (S) is $\rho_{1,2}$ _closed in M₂ by (2,7) step-i- we get λ (S) is $(1, 2)^* _sg^*_closed$ in M and since γ is a pre_ $(1, 2)^* _sg^*_closed$ function, then γ (λ (S))= $\gamma \circ \lambda$ (S) is (1, 2)*_sg*_closed in N. Hence, $\gamma \circ \lambda$:(H,T_1,T_2) \longrightarrow (N, ξ_1,ξ_2) is $contra_(1,2)*_sg**_open function$. In the same way we will prove (3,36): **Proposition** (3,36):Let $\lambda : (H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (M, \rho_1,\rho_2)$ be $(1,2)^*$ open (resp. $(1,2)^*$ sg*_open) function and $\gamma:(M,\rho_1,\rho_2) \longrightarrow (N,\xi_1,\xi_2)$ be contra_(1,2)*_sg***_open function, then $\gamma \circ$ $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow(N,\xi_1,\xi_2)$ is contra_ $(1,2)*_sg*_open$. ## Proposition(3,37): Let $\lambda:(H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (M, \rho_1, \rho_2)$ be a pre_(1,2)*_sg*_open function and $\gamma:(M, \rho_1, \rho_2)$ \longrightarrow (N, ξ_1 , ξ_2) be a contra_(1,2)*_s g^{***} _open function, then $\gamma \circ \lambda$:(H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (N, ξ_1 , ξ_2) is contra_(1,2)*_sg***_open **Proof:-** Let S be $(1,2)^*$ _s g^* _open set in H, since λ is pre_ $(1,2)^*$ _s g^* _open function .Thus , λ (S) is(1,2)*_sg*_open in M . Also , since γ is a contra_(1,2)*_sg***-open function , then γ (λ (S))= $\gamma \circ \lambda$ (S) is $\xi_{1,2}$ closed in N . Therefore, $\gamma \circ \lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (N,\xi_1,\xi_2)$ is $contra_(1,2)*_sg^{***}_open$ function # 4. Contra_ (sg^*, g) _open functions and Contra_ (g, sg^*) _open functions : In this section, we will Give and study new types of contra_ $(1, 2)*_sg*_open$ functions namely [contra_(sg^* , g)_open functions and contra_(g, sg^*)_open functions] in bitopological spaces. **Definition** (4,1): A function $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (M, \rho_1,\rho_2)$ is contra $(1,2)^*(sg^*,g)$ open function if for every $(1,2)^*$ _s g^* _open set, S in $(H,\mathcal{T}_1,\mathcal{T}_2)$, λ (S) is $(1,2)^*$ _g_ closed set in $(M,\mathcal{T}_1,\mathcal{T}_2)$, λ (S) is $(1,2)^*$ _g_ closed set in $(M,\mathcal{T}_1,\mathcal{T}_2)$, λ (S) is $(1,2)^*$ _g_ closed set in $(M,\mathcal{T}_1,\mathcal{T}_2)$, λ (S) is $(1,2)^*$ _g_ closed set in $(M,\mathcal{T}_1,\mathcal{T}_2)$, λ (S) is $(1,2)^*$ _g_ closed set in $(M,\mathcal{T}_1,\mathcal{T}_2)$, λ (S) is $(1,2)^*$ _g_ closed set in $(M,\mathcal{T}_1,\mathcal{T}_2)$, λ (S) is $(1,2)^*$ _g_ closed set in $(M,\mathcal{T}_1,\mathcal{T}_2)$, λ (S) is $(1,2)^*$ _g_ closed set in $(M,\mathcal{T}_1,\mathcal{T}_2)$, λ (S) is $(1,2)^*$ _g_ closed set in $(M,\mathcal{T}_1,\mathcal{T}_2)$, λ (S) is $(1,2)^*$ _g_ closed set in $(M,\mathcal{T}_1,\mathcal{T}_2)$, λ (S) is $(1,2)^*$ _g_ closed set in $(M,\mathcal{T}_1,\mathcal{T}_2)$, λ (S) is $(1,2)^*$ _g_ closed set in $(M,\mathcal{T}_1,\mathcal{T}_2)$. ρ_1, ρ_2). **Proposition (4,2):** Every contra_(1, 2)*_sg**_open function is contra_(1, 2)*_(sg*,g)_open. **Proof**: Suppose S be $(1,2)^*$ _s g^* _open in H, since λ is a contra_ $(1, 2)^*$ _s g^{**} _open function . Thus, λ (S) is(1,2)*_sg*_closed in M, by[Every (1,2)*_sg*_closedis (1,2)*_g_ closed]. Then, λ (S) is $(1,2)*_g$ closed in M. Therefore, λ is contra $(1,2)*_(sg^*,g)$ open function. Corollary (4,3): Every contra_(1, 2)*_sg***_open function is contra_(1, 2)*_(sg*,g)_open. **proof**: It can be proven using proposition (3,28)part-ii- and proposition(4,2). The converse of above proposition and Corollary need not be true as seen from the following Example: **Example**(4,4): Let $H = M = \{ p, q, r \}$ and let $\mathcal{T}_1 = \{ H, \phi, \{ p \} \}$ and $\mathcal{T}_2 = \{ H, \phi, \{ q \}, \{ p, q \} \}$, $\rho_1 = \{M, \phi\}$, and $\rho_2 = \{M, \phi, \{p\}\}\$. Then, the $\mathcal{T}_{1,2}$ -open in $(H,T_1,T_2)=Sg*O(H,T_1,T_2)=\{H,\phi,\{p\},\{q\},\{p,q\}\}\}, \rho_{1,2}$ open set s in $(M,\rho_1,\rho_2)=\{M,\phi,\{p\}\},\{p\},\{p\}\}$ $\rho_{1,2}$ closed set s in $(M, \rho_1, \rho_2) = Sg^*C(M, \rho_1, \rho_2) = \{M, \phi, \{q, r'\}\}\$ and $gC(M, \rho_1, \rho_2) = \{M, \phi, \{q, r'\}\}\$ $\{q\}, \{r\}, \{q, r\}, \{p, q\}, \{p, r\}\}\$. Define $\lambda: (M, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (M, \rho_1, \rho_2)$ by $\lambda(p) = p, \lambda(q) = r$ and $\lambda(r)=q$. Clearly λ is a contra_(1, 2)*_(sg*, g)_open_nction. But λ is not [contra-(1, 2)* _sg***_open and is not contra_(1, 2)* _sg**_open] function , since for (1,2)* _sg*_open S={\$\mu\$, \$\mathcal{q}\$} , \$\mathcal{q}\$} in H , \$\lambda\$ (S)= \$\lambda\$ (\${\mu}\$, \$\mathcal{q}\$})={\$\mu\$, \$\mu\$} is not \$\rho\$_{1,2}\$_closed(resp. (1,2)* _sg*_closed) in M. Proposition (4,5) Give the condition to make proposition(4,2) and Corollary(4,3) are true : **proposition(4,5):** If $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (M,\rho_1,\rho_2)$ is a contra_(1,2)*_(sg*,g)_open function and M is a (1,2)*_ $T_{1/2}$ space, then λ is - (i) Contra (1, 2)* sg***_open function. - (ii) Contra $(1, 2)*_sg^{**}$ _open function. #### **Proof** (i): Let S be(1,2)*_s g^* _open set in H, since λ is contra_(1, 2)*_(s g^* ,g)_open function .Thus λ (S) is(1,2)*_g_ closed in M ,since M is (1,2)*_ $T_{1/2}$ space , then λ (S) is a $\rho_{1,2}$ -closed set in M. Therefore , λ is contra_(1,2)*_s g^{***} _open function. And in the same way, part (ii) can be proved **Remark(4,6):** contra_(1,2)*_open functions and contra _(1,2)*_sg*_open functions are independent with contra_(1, 2)*_(sg*,g)_open functions : # **Example**(4,7): - (i) Suppose $H = M = \{ p,q, r \}$, $\mathcal{T}_1 = \{ H , \phi \}$, $\mathcal{T}_2 = \{ H , \phi, \{ p , r \} \}$, $\rho_1 = \{ M , \phi, \{ p \} \}$, and $\rho_2 = \{ M, \phi, \{ p , r \} \}$. Then, the $\mathcal{T}_{1,2}$ -open set s in $(H,\mathcal{T}_1,\mathcal{T}_2) = \{ H, \phi, \{ p , r \} \}$, $\rho_{1,2}$ -open set s in $(M, \rho_1, \rho_2) = \{ M, \phi, \{ p \}, \{ p , r \} \}$, and $\rho_{1,2}$ -closed in $(M, \rho_1, \rho_2) = \{ M, \phi, \{ q \}, \{ q , r \} \}$. Define λ : $(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (M,\rho_1,\rho_2)$ by λ (p) = q, λ (q) = p and λ (r) = r. Clearly λ is [contra_(1, 2)*_open and contra_(1, 2)*_sg*_open] function. But λ is not contra_(1, 2)*_(sg*,g)_open function, since for (1,2)*_sg*_open set $S = \{ r \}$ in H, λ $(S) = \lambda$ $(\{ r \}) = \{ r \}$ is not (1,2)*_g_ closed in M. - (ii) Suppose $H = M = \{ p,q, r \}$, $\mathcal{T}_1 = \{ H, \phi \}$ and $\mathcal{T}_2 = \{ H, \phi, \{ p \} \}$, then the $\mathcal{T}_{1,2}$ -open set s in $(H,\mathcal{T}_1,\mathcal{T}_2) = \{ H, \phi, \{ p \} \}$ and $\mathcal{T}_{1,2}$ -closed in $(H,\mathcal{T}_1,\mathcal{T}_2) = \{ M,\phi, \{ q,r \} \}$. Define $\lambda : (H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (H,\mathcal{T}_1,\mathcal{T}_2)$ by $\lambda (p) = r,\lambda (q) = q$ and $\lambda (r) = p$. Clearly λ is a contra_(1, 2)*_(sg*,)_open function. But λ is not [contra_(1, 2)*_open and contra_(1, 2)*_sg*_open] function, since for $\mathcal{T}_{1,2}$ -open set $S = \{ p \}$ in H, $\lambda (S) = \lambda (\{ p \}) = \{ r \}$ is not [$\mathcal{T}_{1,2}$ -closed and is not (1,2)*_sg*_closed]set in M. To make (4,6) true we must add another condition as we will notice in (4,8): **Proposition(4,8):** If $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (M,\rho_1,\rho_2)$ is a contra_(1,2)*_(sg*,g)_open function and M is (1,2)*_T_{1/2} space, then λ is - (i) Contra (1, 2)*_open function. - (ii) Contra (1, 2)*_sg*_open function. #### **Proof** (i): Let S be $\mathcal{T}_{1,2}$ – open set in H , since [all $\mathcal{T}_{1,2}$ – open set is $(1,2)^*_sg^*_open$] . Thu , S is $(1,2)^*_sg^*_open$ in H . Also ,since λ is contra_(1, 2)*_(sg^*,g)_open function . Thus λ (S) is $(1,2)^*_g$ _ closed in M ,since M is $(1,2)^*_T_{1/2}$ space , then λ (S) is a $\rho_{1,2}$ _closed set in M. Therefore , λ is contra_(1,2)*_open function. And in the same way, part (ii) can be proved **Proposition(4,9):** If $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (M,\rho_1,\rho_2)$ is a contra_(1,2)*_open function and H is RM_space, then λ is contra_(1,2)*_(sg*,g)_open function. **Proof**: Suppose S is $(1,2)^*$ _s g^* _open in H , since H is a RM _ space , then S is $\mathcal{T}_{1,2}$ _open in H . Also , since λ is contra_(1,2)*_open function . Thus, λ (S) is $\rho_{1,2}$ _closed in M and by using (2,7)step-ii- we obtain , λ (S) is $(1,2)^*$ _g_ closed in M. Therefore , λ is contra_(1,2)*_(s g^* ,g)_open function . **Proposition(4,10):** If $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (M,\rho_1,\rho_2)$ is a contra_(1,2)*_sg*_open function and H is RM _space , then λ is contra_(1,2)*_(sg*,g)_open function . **Proof:** Suppose S is $(1,2)^*_sg^*_open$ in H , since H is RM $_$ space , then S is $\mathcal{T}_{1,2}_open$ in H .Also , since λ is contra_ $(1,2)^*$ sg $*_open$ function . Thus , λ (S) is a $(1,2)^*_sg^*_closed$ in M and by using Remark(2,7)step-iii-we obtain, λ (S) is $(1,2)^*_g_closed$ in M. Therefore , λ is contra_ $(1,2)^*_(sg^*,g)_open$. The following anther type of contra_(1,2)*_ (sg^*,g) _open functions, which is called contra(1,2)*_ (g,sg^*) _open function. **Definition(4,11):** A function $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (M,\ \rho_1,\rho_2)$ is said to be contra _(1,2)*_(g ,sg*)_open function if for every (1,2)*_g_ open set S in (H, \mathcal{T}_1 , \mathcal{T}_2), λ (S) is (1,2)*_sg*_ closed set in (M, ρ_1 , ρ_2). **Proposition**(4,12): Every contra_ $(1,2)^*$ _(g, sg*)_open function is contra_ $(1,2)^*$ _sg**_open function. **Proof:** Let S be $(1,2)^*$ _ s g^* _open set in H , by Remark(2,7)step-iii-,we get S is $(1,2)^*$ _g_ open in H, since λ is a contra_ $(1,2)^*$ _(g ,s g^*)_open function .Thus , λ (S) is $(1,2)^*$ _s g^* _closed set in M . Therefore λ is contra_ $(1,2)^*$ _s g^{**} _open function. **Corollary (4,13):** Every contra $(1, 2)*(g, sg^*)$ open is - (i) Contra_(1,2)*_ (sg^*,g) _open function. - (ii) Contra_(1,2)*_sg*_open function. **proof**:(i) It can be proven using proposition (4,12) and proposition(4,2). (ii) It can be proven using proposition (4,12) and proposition(3,13). The next Example show that the inverse of proposition(4,12) and Corollary(4,13) need not be true: # **Example(4,14):** Suppose $H = M = \{ \mathcal{P}, \mathcal{q}, \mathcal{F} \}$, $\mathcal{T}_1 = \{ H, \phi, \{ \mathcal{P} \} \}$, $\mathcal{T}_2 = \{ H, \phi, \{ \mathcal{P} \} \}$, $\rho_1 = \{ M, \phi, \{ \mathcal{P} \} \}$, and $\rho_2 = \{ M, \phi, \{ \mathcal{Q} \}, \{ \mathcal{P}, \mathcal{Q} \} \}$. Then, the $\mathcal{T}_{1,2}$ -open in $(H, \mathcal{T}_1, \mathcal{T}_2) = \{ H, \phi, \{ \mathcal{P} \} \}$, $\rho_{1,2}$ -open set s in $(M, \rho_1, \rho_2) = \{ M, \phi, \{ \mathcal{P} \}, \{ \mathcal{Q}, \mathcal{F} \} \}$ and $\rho_{1,2}$ -closed in $(M, \rho_1, \rho_2) = \{ M, \phi, \{ \mathcal{F} \}, \{ \mathcal{P}, \mathcal{F} \}, \{ \mathcal{Q}, \mathcal{F} \} \}$. Define λ : $(H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (M, \rho_1, \rho_2)$ by λ $(\mathcal{P}) = \mathcal{F}$, λ $(\mathcal{Q}) = \mathcal{Q}$ and λ $(\mathcal{F}) = \mathcal{P}$. It is observe that λ is [contra- $(1, 2)^* = sg^*$ -open and contra- $(1, 2)^* = sg^*$ -open and contra- $(1, 2)^* = sg^*$ -open function since for $(1, 2)^* = sg^*$ -open set $S = \{ \mathcal{Q} \}$ in H, λ $(S) = \lambda$ $(\{ \mathcal{Q} \}) = \{ \mathcal{Q} \}$ is not $(1, 2)^* = sg^*$ -closed set in M. To make (4,12) and (4,13) are true we must add another condition as we will notice in (4,15): **Proposition** (4,15): A function $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (M,\,\rho_1,\rho_2)$ is a contra_(1,2)*_(g ,sg*)_open function if H is $(1,2)^*$ _T_{1/2} space and λ is - (i) Contra (1, 2)* sg* open function. - (ii) Contra (1, 2)*_sg**_open function. #### **Proof** (i): Suppose S is $(1,2)^*$ _g_ open in H, since H is $(1,2)^*$ _ $T_{1/2}$ space, then S is $\mathcal{T}_{1,2}$ _open set in H. Also, since λ is contra_(1, 2)*_s g^* _open function. Thus λ (S) is(1,2)*_s g^* _closed in M. Therefore, λ is contra_(1,2)*_s g^* _open function. And in the same way ,part(ii)can be proved. **Proposition (4,16):** If $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (M,\rho_1,\rho_2)$ is a contra_(1,2)*_(sg*,g)_open function and H ,M are (1,2)*_ $T_{1/2}$ spaces , then λ is contra_(1,2)*_(g, sg*)_open function. **Proof:** Let S be $(1,2)^*$ _g_ open in H, since H is $a(1,2)^*$ _ $T_{1/2}$ space, then S is $\mathcal{T}_{1,2}$ _open in H and by (2,7) step-i-, we obtain S is $(1,2)^*$ _s g^* _open in H . Also, since λ is contra_(1, 2)*_(sg*,g)_open function .Thus λ (S) is(1,2)*_g_ closed set in M, by hypotheses M is $(1,2)^*$ _T_{1/2} space. Then, λ (S) is a $\rho_{1,2}$ _closedin M and by (2,6)step-i-, we get λ (S) is $(1,2)^*$ _sg*_closed in M . Therefore , λ is contra_ $(1,2)^*$ _sg*_open . **Remark(4,17):** contra (1,2)*_open functions and contra (1,2)*_s g^{***} _open functions are independent to contra_(1, 2)*_ (g, sg^*) _open functions . see the next Examples : # **Example**(4,18): (i) Suppose $H=M=\{p, q, r\}, T_1=\{H, \phi, \{p\}\}\$ and $T_2=\{H, \phi, \{p,r\}\}\$. Then, the $T_{1,2}$ -open in(H, \mathcal{T}_1 , \mathcal{T}_2)={H, ϕ ,{ \mathcal{P} },{ \mathcal{P} ,* \mathcal{P} }}, and $\mathcal{T}_{1,2}$ _closed set s in (H, \mathcal{T}_1 , \mathcal{T}_2) ={H, ϕ ,{ \mathcal{Q} },{ \mathcal{Q} ,* \mathcal{P} }}. Define :(H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (H, \mathcal{T}_1 , \mathcal{T}_2) by $\lambda(p)=q$, $\lambda(q)=p$ and $\lambda(r)=r$. Clearly λ is [contra_(1, 2)*_open and contra_(1, 2)*_s g^{***} _open] function. But λ is not contra_(1, 2)*_(g, sg^{*})_open function, since for $(1,2)^*$ _g_open $S=\{r\}$ in H, $\lambda(S)=\lambda(\{r\})=\{r\}$ is not $(1,2)^*$ _s g^* _closed set in M. (ii) Let $H = M = \{p, q, r\}$ and let $\mathcal{T}_1 = \{H, \phi\}$, $\mathcal{T}_2 = \{H, \phi, \{p, r\}\}$, then the $\mathcal{T}_{1,2}$ -open set s in $(H,\mathcal{T}_1,\mathcal{T}_2) = \{H, \phi,\{p\}\}\$, $\rho_1 = \{M,\phi,\{p\},\{q,r\}\}\$, $\rho_2 = \{M,\phi,\{p,r'\}\}\$, then $\rho_{1,2}$ open in $(M,\mathcal{T}_1,\mathcal{T}_2)$ $, \rho_1, \rho_2 = \{ M, \phi, \{p\}, \{p, r\}, \{q, r\} \} \}, \rho_{1,2} \text{ _closed in}(M, \rho_1, \rho_2) = \{ M, \phi, \{p\}, \{q\}, \{q, r\} \} \}$. Define λ :(H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (M, ρ_1 , ρ_2) by $\lambda(p)=p$, $\lambda(q)=r$ and $\lambda(r)=q$. Clearly λ is contra _(1, 2)*_(sg*, g) _open nction. But λ is not [contra_(1,2)*_sg***_open and is not contra_(1,2)*_open] function, since for $(1,2)^*$ _s g^* _open set $S=\{p,r\}$ in H, λ $(S)=\lambda$ $(\{p,r\})=\{p,q\}$ is not $\rho_{1,2}$ _closed set in M. To make (4,17) true we must add another condition as we will notice in (4,19): **Proposition** (4,19):A function $\lambda: (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (M, \rho_1, \rho_2)$ is a contra_(1,2)*_(g ,sg*)_open function if H is $(1,2)^*_{T_{1/2}}$ space, and λ is - (i) Contra (1, 2)*_open function. - (ii)Contra (1, 2)* sg***open function. #### **Proof** (i):Let S is $(1,2)^*$ _g_ open in H, by hypotheses H is $(1,2)^*$ _ $T_{1/2}$ space .Thus,S is $\mathcal{T}_{1,2}$ _open in H. Also, since λ is contra_(1, 2)*_open . This lead $\lambda(S)$ is $\rho_{1,2}$ _closed in M (since all $\rho_{1,2}$ _closed is(1,2)*_sg*_closed). Hence, λ (S) is (1,2)*_sg*_closed in M. Therefore, λ is contra_(1,2)*_(g) $,sg^*)$ _open function. And in the same way, part(ii)can be proved. **Proposition** (4,20): If $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (M,\rho_1,\rho_2)$ is a contra_(1,2)*_(g ,sg*)_open function and M is a $(1,2)^*$ _ RM_ space, then λ is - (i) Contra_(1,2)*_open function - (ii) Contra (1,2)*_sg***_open function. #### **Proof** (i):Let S be $\mathcal{T}_{1,2}$ open in H , by (2,7) step-ii- we get , S be $(1,2)^*$ _g_ open in H ,and since λ is contra_(1,2)*_(g,sg*)_open function. Thus, λ (S) is (1,2)*_sg*_closed in M. BY hypotheses M RM _ space , then , λ (S) is $\rho_{1,2}$ -closed in M Therefore , λ is contra_(1,2)*_open function. And in the same way ,part(ii)can be proved. Some properties and results about the composition of contra_(1,2)*_ (sg^*, g) _open functions and contra $(1,2)^*$ (g, sg^*) open functions will be Given in the following. #### **Proposition(4,21):** Let $\lambda: (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (M, \rho_1, \rho_2)$ is pre_(1,2)*_sg*_open function and $\gamma: (M, \rho_1, \rho_2) \longrightarrow (N, \xi_1, \xi_2)$ be contra_(1,2)*_(sg*,g)_open function, then $\gamma \circ \lambda: (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (N, \xi_1, \xi_2)$ is contra_(1,2)*_(sg*,g)_open . **Proof:-**suppose S is $(1,2)^*_sg^*_open$ in H, .Thus , λ (S) is $(1,2)^*_sg^*_open$ in M . Also , since γ is contra_ $(1,2)^*_(sg^*,g)_open$ function , then γ (λ (S)) is $(1,2)^*_g_closed$ set in N. But, $\gamma(\lambda(S))=\gamma\circ\lambda$ (S).. Therefore , $\gamma\circ\lambda$: (H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (N, ξ_1 , ξ_2) is contra_ $(1,2)^*_(sg^*,g)_open$. # **Proposition**(4,22): Let $\lambda: (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (M, \rho_1, \rho_2)$ be a pre- $(1,2)^*$ _s g^* _open function and $\gamma: (M, \rho_1, \rho_2) \longrightarrow (N, \xi_1, \xi_2)$ be contra_ $(1,2)^*$ _(g ,s g^*)_open , then $\gamma \circ \lambda: (H,\mathcal{T}_1, \mathcal{T}_2) \longrightarrow (N, \xi_1, \xi_2)$ is contra_ $(1,2)^*$ _s g^{**} _open function **Proof:-** Let S be a $(1,2)^*_sg^*_open$ in H, since λ is a pre__ $(1,2)^*_sg^*_open$ function .Thus , λ (S) is $(1,2)^*_-sg^*_open$ in M and by Remark(2,7) step-iii- we get , λ (S) is $(1,2)^*_g$ __open in M. Also , since γ is contra__ $(1,2)^*_(g,sg^*)_open$ function , then γ (λ (S)) is $(1,2)^*_sg^*_closed$ in N. But, $\gamma(\lambda(S)) = \gamma \circ \lambda$ (S). Therefore , $\gamma \circ \lambda$:(H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (N, ξ_1 , ξ_2) is contra__ $(1,2)^*_sg^{**}_open$ function. **Corollary**(**4,23**):Let $\lambda: (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (M, \rho_1, \rho_2)$ be a pre_(1,2)*_sg*_open function and $\gamma: (M, \rho_1, \rho_2) \longrightarrow (N, \xi_1, \xi_2)$ be contra_(1,2)*_(g ,sg*)_open function, then $\gamma \circ \lambda: (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (N, \xi_1, \xi_2)$ is (i) Contra_(1,2)*_sg*_open function . , (ii) Contra_(1,2)*_(sg*,g)_open . **proof**(i):It is follows from (4,22) and (3,13). **proof**(ii):It is follows from (4,22) and (4,2). **Proposition(4,24):** suppose $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (M, \rho_1,\rho_2)$ be any function and $\gamma:(M, \rho_1,\rho_2) \longrightarrow (N,\xi_1,\xi_2)$ be contra_(1,2)*_(g ,sg*)_open function, then $\gamma \circ \lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (N,\xi_1,\xi_2)$ is contra_(1,2)*_sg*_open . If λ is - (i) $(1,2)^*$ open nction. - (ii) $(1,2)* _sg*_open$ nction. - (iii) (1,2)*_g_open nction. #### **Proof** (i): Suppose S is $\mathcal{T}_{1,2}$ _open in H .Thus, λ (S) is $\rho_{1,2}$ _open in M, by (2,7)step-ii- we get, λ (S) is (1,2)*_g_open in M Also , since γ is a contra_(1,2)_(g ,s g^*)_open , then γ (λ (S))= γ or λ (S) is a (1,2)*_s g^* _ closed in N . Therefore , γ or λ :(H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (N , ξ_1 , ξ_2) is contra(1,2)*_s g^* _open function . And in the same way ,part(ii)can be proved. **Proposition** (4 ,25): Let λ : (H , \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (M, ρ_1 , ρ_2) be a contra_(1,2)*_(g ,sg*)_open function and γ :(M, ρ_1 , ρ_2) \longrightarrow (N , ξ_1 , ξ_2) be a pre_(1,2)*_sg*_closed function, then $\gamma \circ \lambda$:(H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (N , ξ_1 , ξ_2) is contra_(1,2)*_(g ,sg*)_open function. **Proof**:- Suppose S is $(1,2)^*$ _g_ open in H, since λ is contra_ $(1,2)^*$ _(g , sg*)_open function. Thus , λ (S) is $(1,2)^*$ _sg*_closed in M Also , since γ is pre $(1,2)^*$ _sg*_closed ,then γ (λ (S)) is $(1,2)^*$ _sg*_closed set in N. But, $(\lambda$ (S))= γ \circ λ (S). Therefore , γ \circ λ : (H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (N , ξ_1 , ξ_2) is contra_(1,2)*_(g ,sg*)_open. **Corollary**(**4,26**): Let λ :(H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (M, ρ_1 , ρ_2) be a contra_(1,2)*_(g ,sg*)_open function and γ :(M, ρ_1 , ρ_2) \longrightarrow (N , ξ_1 , ξ_2) be a pre_(1,2)*_sg*_closed function, then $\gamma \circ \lambda$:(H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (N , ξ_1 , ξ_2) is - (i) Contra_(1,2)*_sg*_open function. , - (ii) Contra_(1,2)*_s g^{**} _open. ### **Proof** (i): Let S is $\mathcal{T}_{1,2}$ -open in H ., by (2,7)step-ii- we get, λ (S) is (1,2)*_g_open in H, since λ is contra_ $(1,2)^*$ _ (g, sg^*) _open function. Thus, λ (S) is $(1,2)^*$ _sg*_closed in M. Also, since γ is pre $(1,2)*_sg*_closed$, then γ (λ (S)) is $(1,2)*_sg*_closed$ set in N. But, $(\lambda$ (S))= $\gamma \circ \lambda$ (S). Therefore, $\gamma \circ \lambda: (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (N, \xi_1, \xi_2)$ is contra_(1,2)*_sg*_open function. And in the same way ,part(ii)can be proved. ## **Remark**(4,27): - (i) If $\lambda : (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (M, \rho_1, \rho_2)$ is $(1,2)^*$ _open [resp. $(1,2)^*$ _s g^* _open , $(1,2)^*$ _g_ open] function and $\gamma:(M,\rho_1,\rho_2)\longrightarrow (N,\xi_1,\xi_2)$ is contra_(1,2)*_(sg* ,g)_open function, then $\gamma\circ$ $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow(N,\xi_1,\xi_2)$ is not necessarily contra_(1,2)*_(sg*,g)_open function. - (ii) If $\lambda:(H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (M, \rho_1, \rho_2)$ is $(1,2)^*$ _open [$(1,2)^*$ _s g^* _open , $(1,2)^*$ _g_ open , pre- $(1,2)^*$ _s g^* _open]function and γ : $(M, \rho_1, \rho_2) \longrightarrow (N, \xi_1, \xi_2)$ is a contra_ $(1,2)^*$ _ (g, ξ_1, ξ_2) $\gamma \circ \lambda: (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (N, \xi_1, \xi_2)$ is not necessarily contra_(1,2)*_(g sg^*)_open function, then ,sg*) open function. To make (4,27) true we must add another condition as we will notice in (4,28): **Proposition** (4,28): Let $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (M,\rho_1,\rho_2)$ be any function and $\gamma:(M,\rho_1,\rho_2)\longrightarrow (N,\rho_1,\rho_2)$ $, \xi_1, \xi_2)$ be contra_(1,2)*_(sg*, g)_open function, then $\gamma \circ \lambda$:(H, $\mathcal{T}_1, \mathcal{T}_2$) \longrightarrow (N, ξ_1, ξ_2) is contra_(1,2)*_(sg*,g)_open . If H is RM_ space and λ is , (ii) (1,2)* _sg*_open function. **(i)** $(1,2)^*$ open nction. #### **Proof** (i): suppose S is $(1,2)^*$ _s g^* _open in H .Since H is RM_ space, then by S is a $\mathcal{T}_{1,2}$ _open in H. Also since λ is $(1,2)^*$ _open function. Thus, λ (S) is $\rho_{1,2}$ _open s in M, by Remark(2,7) step-ii-we get, λ (S) is $(1,2)^*$ _s g^* _open in M. Also, since γ is a contra_ $(1,2)^*$ _(s g^* ,g)_open, then $\gamma(\lambda$ (S)) is $(1,2)*_g$ closed in N. But, $\gamma(\lambda(S))=\gamma \circ \lambda(S)$. Therefore, $\gamma \circ \lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (N,\xi_1,\xi_2)$ is $contra(1,2)*_(sg^*,g)_open$ function. And in the same way ,part(ii)can be proved. In the same way we prove proposition (4,29): **Proposition(4,29):** If $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (M,\rho_1,\rho_2)$ is $(1,2)^*$ _g_ open function and $\gamma:(M,\rho_1,\rho_2)$ \longrightarrow (N, ξ_1, ξ_2) is contra_(1,2)*_(sg*, g)_open function, then $\gamma \circ \lambda$:(H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (N, ξ_1 , ξ_2) is contra_(1,2)*_ (sg^*,g) _open if H is RM_ space and M is (1,2)*_ $T_{1/2}$ _space. **Proposition** (4,30): Let $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (M,\rho_1,\rho_2)$ be any function, $\gamma:(M,\rho_1,\rho_2)\longrightarrow (N,\rho_1,\rho_2)$, ξ_1,ξ_2) be contra_(1,2)*_(g ,sg*)_open function, and H is (1,2)*_T_{1/2}_space , then $\gamma \circ$ $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow(N,\xi_1,\xi_2)$ is contra_(1,2)*_(g,sg*)_open . If H is RM_ space and λ is - (1,2)*_open nction. **(i)** - (ii) (1,2)* _sg*_open nction. - (iii) $(1,2)*_g$ open nction. - $pre_{1,2}^{s} sg^{s}$ open function. (iv) #### **Proof:** (i) Let S be a $(1,2)^*$ _g_ open set in H .Since H is $(1,2)^*$ _T_{1/2}_space, then S is a $\mathcal{T}_{1,2}$ _open in H . Also since λ is $(1,2)^*$ _open . Thus, λ (S) is $\rho_{1,2}$ open in M, by (2,7)step-ii-we get, λ (S) is $(1,2)^*$ _g_open in M Also, since γ is contra_ $(1,2)^*$ _(g,sg*)_open, then γ (λ (S)) is a $(1,2)^*$ _sg*_ closed in N. But, $\gamma(\lambda(S)) = \gamma \circ \lambda(S)$. Therefore, $\gamma \circ \lambda: (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (N, \xi_1, \xi_2)$ is contra(1,2)*_(g, sg^*) open function. The proof of part-ii-,-iii-,and-iv- are similar to part-i-. #### **Remark (4,31):** - \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (M, ρ_1, ρ_2) is contra_ $(1,2)^*$ _(sg*,g)_open function and γ (i) If λ :(H, $:(M,\rho_1,\rho_2)\longrightarrow (N,\xi_1,\xi_2)$ is (1,2)*_closed [(1,2)*_sg*_closed ,(1,2)*_g_ pre_(1,2)*_sg*_closed] function ,then $\gamma \circ \lambda$:(H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (N , ξ_1 , ξ_2) is not necessarily $contra_(1,2)*_(sg^*,g)_open$ function. - (ii) If $\lambda : (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (M, \rho_1, \rho_2)$ is contra_(1,2)*_(g, sg*)_open function and γ $:(M,\rho_1,\rho_2)\longrightarrow (N,\xi_1,\xi_2)$ is $(1,2)*_closed$ [$(1,2)*_sg*_closed$, $(1,2)*_g_closed$] function and, then $\gamma \circ \lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (N,\xi_1,\xi_2)$ is not necessarily contra_(1,2)*_(g, sg*)_open function. The following Examples to show that: # **Example**(4,32): (i) Let $H=M=N=\{p, q, r\}$ and let $\mathcal{T}_1=\{H, \phi, \{p\}\}, \mathcal{T}_2=\{H, \phi, \{p, r\}\}, \rho_1=\{M, \phi\}, \text{ and } p \in \mathcal{T}_1=\{H, \phi, \{p\}\}, \mathcal{T}_2=\{H, \mathcal{$ $\{ \mathcal{N} \}$, $\{ \rho_{1,2}$ open set s in $\{ M, \rho_1, \rho_2 \} = \{ M, \phi, \{ p \} \}$, $\{ \rho_{1,2}$ closed in $M = \{ M, \phi, \{ q, \mathcal{N} \} \}$, $\{ \xi_{1,2}$ open set s in $(N,\xi_1,\xi_2) = \{N,\phi,\{p\},\{p,r'\},\{q,r'\}\}, \xi_{1,2}$ closed set s in $(N,\xi_1,\xi_2) = \{N,\phi,\{p\},\{q\},\{q,r'\}\}$ and define $\lambda:(H, \tau_1, \tau_2) \longrightarrow (M, \rho_1, \rho_2)$ by $\lambda(p) = r$, $\lambda(q) = q$ and $\lambda(r) = p$ and define γ $:(M,\rho_1,\rho_2)\longrightarrow (N,\xi_1,\xi_2)$ by γ (p)=p, γ (q)=q and γ (r)=r. It is observe that λ contra_(1,2)*_ (sg^*,g) _open function and γ is(1,2)*_closed [(1,2)*_s g^* _closed , (1,2)*_g_ closed, pre_(1,2)*_sg*_closed] function, but $\gamma \circ \lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (N,\xi_1,\xi_2)$ is not contra_(1,2)*_ (sg^*,g) _open function, since for(1,2)*_ sg^* _open set $S=\{p\}$ in H, $\gamma \circ \lambda$ (S)= $\gamma \circ \lambda (\{p\}) = \gamma (\lambda (\{p\}) = \gamma (r) = r$ is not $(1,2)*_g$ closed set s in N (ii)Let $H=M=N=\{p,q,r'\}, \mathcal{T}_1=\{H,\phi,\{p\}\}, \mathcal{T}_2=\{H,\phi,\{p,r'\}\}, \rho_1=\{M,\phi,\{q\}\}, \rho_2=\{M,\phi,\{p,r'\}\}, \rho_3=\{M,\phi,\{p,r'\}\}, \rho_4=\{M,\phi,\{q\}\}, \rho_4=\{M,\phi,\{p,r'\}\}, \rho_4=\{M,\phi,\{q\}\}, \rho_4=\{M,\phi,\{p,r'\}\}, \rho_4=\{M,\phi,\{q\}\}, \rho_4=\{M,\phi,\{q\}\}, \rho_4=\{M,\phi,\{p,r'\}\}, \rho_4=\{M,\phi,\{q\}\}, \rho$ $\xi_1 = \{N, \phi, \{q, r\}\}\$ and $\xi_2 = \{N, \phi, \{p\}, \{p, r\}\}\$, then $T_{1,2}$ -open set s in $(H, T_1, T_2) = \{H, \phi, \{p\}, \{p\}\}\$ \mathcal{N} , $:(H,\tau_1,\tau_2)\longrightarrow (M,\rho_1,\rho_2)$ by λ (p)=r, λ (q)=q, $\lambda(r)=p$ and $\gamma:(M,\rho_1,\rho_2)\longrightarrow (N,\xi_1,\xi_2)$ by $\gamma(p)=p$, $\gamma(q)=q$ and $\gamma(r)=r$. Clearly λ is contra_(1,2)*_(g, sg*)_open function and γ is (1,2)*_closed [(1,2)*_sg*_closed , (1,2)*_g_ closed] function and , then sg*)_open . But $\gamma \circ$ To make (4,31) true we must add another condition as we will notice in (4,33): in H, $\gamma \circ \lambda$ (S)= $\gamma \circ \lambda$ ($\{p\}$)= γ (λ ($\{p\}$)= γ (γ)= γ is not (1,2)*_sg*_closed set s in N. **Proposition(4,33):** Let $\lambda:(H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (M, \rho_1, \rho_2)$ is contra_(1,2)*_(sg*,g)_open function and $\gamma:(M,\rho_1,\rho_2)\longrightarrow (N,\xi_1,\xi_2)be(1,2)^*$ _closedand $(1,2)*_T_{1/2}$ space, M is then $\nu \circ$ $\lambda:(M,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow(N,\xi_1,\xi_2)$ is $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow(N,\xi_1,\xi_2)$ is not contra_(1,2)*_(g, sg*)_open, since for(1,2)*_g_open set S={p} (i)contra_(1,2)*_s g^{***} _open function. (ii)contra_(1,2)*_ (sg^*,g) _open function. #### **Proof:** (i) Suppose S is $(1,2)*_sg*_open$ in H. Thus, λ (S) is $(1,2)*_g_$ closed in M, by hypotheses M is (1,2)*_T_{1/2}_space, then λ (S) is $\rho_{1,2}_closed$ in M. Also , since γ is (1,2)*_closed , then $~\gamma~(\lambda)$ (S) is a $\xi_{1,2}$ -closed in N. Therefore, $\gamma \circ \lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (N,\xi_1,\xi_2)$ is $contra(1,2)^*$ sg^{***} open .And in the same way ,part(ii)can be proved. # In the same way, we will prove (4,34): **Corollary**(**4**,**34**): $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (M,\rho_1,\rho_2)$ is $contra_{(1,2)}*_{(sg^*,g)}_{open}$ function ,and $\gamma:(M,\rho_1,\rho_2)\longrightarrow (N,\xi_1,\xi_2)$ be any function and M is $(1,2)^*_T_{1/2}$ space ,then $\gamma \circ$ $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow(N,\xi_1,\xi_2)$ is contra_(1,2)*_sg**_open function if - (i) γ is $(1,2)*_sg*_closed$ function. - γ is pre_(1,2)*_sg*_closedfunction. # **Corollary**(4,35): $:(H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (M, \rho_1, \rho_2)$ is contra_(1,2)*_(sg*,g)_open If function, $:(M,\rho_1,\rho_2)\longrightarrow (N,\xi_1,\xi_2)$ be $(1,2)^*$ g_ closed function and M is $(1,2)^*$ space, then $\gamma \circ \lambda: (H, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (N, \xi_1, \xi_2)$ is contra_(1,2)*_(sg*,g)_open function. **Proof**: Suppose S is $(1,2)^*$ _s g^* _open in H. Thus, λ (S) is $(1,2)^*$ _g_ closed in M, by hypotheses M is $(1,2)^*_{T_{1/2}}$ space, then λ (S) is $\rho_{1,2}$ closed in M. Also, since γ is $(1,2)^*_{g}$ closed, then γ $(\lambda(S))=\gamma \circ \lambda(S)$ is a $\xi_{1,2}$ -closed in N [since all (1,2)*_closed is (1,2)*_ g _closed]set , so we get γ (λ (S))= $\gamma \circ \lambda$ (S) is (1,2)*_ g _closed in N . Therefore , $\gamma \circ \lambda$:(H, \mathcal{T}_1 , \mathcal{T}_2) \longrightarrow (N , ξ_1 , ξ_2) is contra_(1,2)*_ (sg^*,g) _open function. # **Proposition**(4,36): If $\lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow(M,\rho_1,\rho_2)$ is contra_(1,2)*_(g ,sg*)_open , $\gamma:(M,\rho_1,\rho_2)\longrightarrow(N,\xi_1,\xi_2)$ is $(1,2)^*$ _closedfunction and M is RM_space, then $\gamma \circ \lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (N,\xi_1,\xi_2)$ is - $contra_(1,2)*_(g, sg^*)_open function$. (i) - (ii) $contra_(1,2)*_sg^{**}_open function$. #### **Proof** (i):suppose S is $(1,2)^*$ _g_ open in H. Thus, λ (S) is $(1,2)^*$ _s g^* _closed in M, by hypotheses M is RM _space, then λ (S) is $\rho_{1,2}$ _ closed in M. Also , since γ is $(1,2)^*$ _ closed , then γ (λ (S))= $\gamma \circ \lambda$ (S) is a $\xi_{1,2}$ closed in N and by using Remark(2,6) step-i- we get $\gamma \circ \lambda$ (S) is $(1,2)^*$ sg*_closed $\gamma \circ \lambda:(H,\mathcal{T}_1,\mathcal{T}_2) \longrightarrow (N,\xi_1,\xi_2)$ is contra $(1,2)^*(g,sg^*)$ open set in N. Therefore, function. And in the same way ,part(ii)can be proved. In the same way we prove (4,37): # **Corollary**(4,37): If $:(H,\mathcal{T}_1\mathcal{T}_2) \longrightarrow (M,\rho_1,\rho_2)$ is $contra_(1,2)*_(g ,sg*)_open$ function, γ $:(M,\rho_1,\rho_2)\longrightarrow (N,\xi_1,\xi_2)$ is any function and M is RM_space, then $\gamma \circ \lambda:(H,\mathcal{T}_1,\mathcal{T}_2)\longrightarrow (N,\xi_1,\xi_2)$ $, \xi_{1}, \xi_{2})$ is contra_(1,2)*_(g,sg*)_open if γ is a - i- $(1,2)*_sg*_closed$ function. - (1,2)* g closed function. ii- ### **Remark (4,38):** Here in the following diagram illustrates the relation between the contra_(1,2)*_sg*_open functions types (without using condition), where the converse is not necessarily true. ## **Conclusion:** This work has led to find a new types of $contra_(1,2)$ *_open functions in bitopological spaces, it also compare and investigated the relationships between these types of functions, and also several Definitions and results were presented to study the characteristics of those functions. ### References - [1] J.C.Kelly. Bitopological spaces . proc .London Math. Soc. 1963, pp. 13, 71-89. - [2] Dunya M.H and Messa.Z.S. Some types of $(1,2)^*$ -M- πgb -closedmappings. Journal of the college of basic education.2016, vol.22.no:95. - [3] O. ravi and M. Lellis Thivagar. On Stronger forms of (1,2)*-quotient Mappings in Bitopologicall Spaces. Int. Journal of Math. game Theory and Algebra. 2004, Vol. 14, No. 6, pp. 481-492. - [4] O. ravi . M. Lellis Thivagar and Jininli . Remarks on Extensions of (1,2)*-g-Closed Maps .2011 Archimedes .J. Math .,pp.177-187 . - [5] O.ravi, S.pious Missier, T. Salai parkunan, and K. Mahaboob Hassain, S. On (1,2)*-Semi-Generalized-Star Homeomorphisms. Int. Journal of Computer Science and Emerging Technologies, 2011, Vol.2, Issue 2, pp.312-318, April. - [6] T. fukutake.On Generalized Closed Set s in Bitopological Spaces. Bull. fukuoka Univ. Ed.1985 part III, 35, 19-28. - [7] O.Ravi,I.Rajasekaran,A.pandi .On(1,2)*-g#-continuous functions. Journal of new theory .2015 Number:1,pages 69-79. - [8] M.Arunmaran, K.Kannan. Some properties of t_1t_2 - δ semiopen set slclosedset s in Bitopological spaces. International Journal of pure and Applied Mathematics .2017. Vol.115 ,No.4,759-769. - [9] Mohanaand K. Arockiarani I. Contra- $(1,2)^*$ - $M_{\delta\pi}$ -continuous function in Bitopological spaces. International Journal of Recent scientific Research.2016.vol.7,Issue,I, pp.8508-8514,January. - [10] Mohammed A.AL Shumrani, Saeid Jafari, Cenap Ozel. New type of contra continuity via $\delta \beta$ open set s . Academician V.Drnsky .2018 on January 22, Tome 71, No 7.